689 research outputs found

    Sulfur and Iron Speciation in Gas-rich Impact-melt Glasses from Basaltic Shergottites Determined by Microxanes

    Get PDF
    Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Mossbauer studies on rocks at Meridian and Gusev, whereas MgSO4 is deduced from MgO - SO3 correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum and alunogen/ S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/ sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. To understand the implications of these observations for the formation of the Gas-rich Impact-melt (GRIM) glasses, we determined the oxidation state of Fe in the GRIM glasses using Fe K micro-XANES techniques

    Oxidation States of Grim Glasses in EET79001 Based on Vanadium Valence

    Get PDF
    Gas-rich impact-melt (GRIM) glasses in SNC meteorites are very rich in Martian atmospheric noble gases and sulfur suggesting a possible occurrence of regolith-derived secondary mineral assemblages in these samples. Previously, we have studied two GRIM glasses, 506 and 507, from EET79001 Lith A and Lith B, respectively, for elemental abundances and spatial distribution of sulfur using EMPA (WDS) and FE-SEM (EDS) techniques and for sulfur-speciation using K-edge XANES techniques. These elemental and FE-SEM micro-graph data at several locations in the GRIM glasses from Shergotty (DBS), Zagami 994 and EET79001, Lith B showed that FeO and SO3 are positively correlated (SO3 represents a mixture of sulfide and sulfate). FE-SEM (EDS) study revealed that the sulfur-rich pockets in these glasses contain numerous micron-sized iron-sulfide (Fe-S) globules sequestered throughout the volume. However, in some areas (though less frequently), we detected significant Fe-S-O signals suggesting the occurrence of iron sulfate. These GRIM glasses were studied by K-edge microXANES techniques for sulfur speciation in association with iron in sulfur-rich areas. In both samples, we found the sulfur speciation dominated by sulfide with minor oxidized sulfur mixed in with various proportions. The abundance of oxidized sulfur was greater in 506 than in 507. Based on these results, we hypothesize that sulfur initially existed as sulfate in the glass precursor materials and, on shock-impact melting of the precursor materials producing these glasses, the oxidized sulfur was reduced to predominately sulfide. In order to further test this hypothesis, we have used microXANES to measure the valence states of vanadium in GRIM glasses from Lith A and Lith B to complement and compare with previous analogous measurements on Lith C (note: 506 and 507 contain the largest amounts of martian atmospheric gases but the gas-contents in Lith C measured by are unknown). Vanadium is ideal for addressing this re-dox issue because it has multiple valence states and is a well-studied element. Ferrous-dominated iron valences determined by microXANES on the Lith A and Lith B glasses provide little redox sensitivity. Vanadium valence measurements for impact glass in Lith C at three different locations yielded valence values of 3.1, 3.2 and 3.4 with inferred fO2 values of IW-0.7, IW-0.1 and IW+0.7, respectively. This range of oxygen-fugacity values is understandable because the glasses are shock-molten impact glasses which are heterogeneous in nature. Oxygen fugacity values obtained from the analysis of Fe-Ti oxides and Eu partitioning in pyroxenes from EET79001 Lith A and Lith B (host lithologies) were in the range of IW+0.3 to IW+1.9 suggesting that V in the Lith C impact glass was reduced in the impact process. Here, we examine whether the 506 from Lith A and 507 from Lith B GRIM glasses yield similar or different fO2 values from those of Lith C using the vanadium K-edge microXANES technique

    Some Anticipated Science Results from "Local" Martian Sampling Site(s)

    Get PDF
    Current planning for return of a surface sample of Mars planned. Scientific aims and more detailed objectives relating to (a) past/extant life, (b) surface processes and interactions, (c) planetary evolution, and (d) human exploration are summarized in the Mars Exploration Program Analysis Group (MPEAG) document. Here we consider how these aims and objectives might be addressed by samples from individual "local" area(s) (diameter < approx 1 km) based on experience with analyzing subsamples of Martian meteorites

    Compositions of Magmatic and Impact Melt Sulfides in Tissint And EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts

    Get PDF
    Immiscible sulfide melt spherules are locally very abundant in shergottite impact melts. These melts can also contain samples of Martian atmospheric gases [1], and cosmogenic nuclides [2] that are present in impact melt, but not in the host shergottite, indicating some components in the melt resided at the Martian surface. These observations show that some regolith components are, at least locally, present in the impact melts. This view also suggests that one source of the over-abundant sulfur in these impact melts could be sulfates that are major constituents of Martian regolith, and that the sulfates were reduced during shock heating to sulfide. An alternative view is that sulfide spherules in impact melts are produced solely by melting the crystalline sulfide minerals (dominantly pyrrhotite, Fe(1-x)S) that are present in shergottites [3]. In this abstract we report new analyses of the compositions of sulfide immiscible melt spherules and pyrrhotite in the shergottites Tissint, and EETA79001,507, and we use these data to investigate the possible origins of the immiscible sulfide melt spherules. In particular, we use the metal/S ratios determined in these blebs as potential diagnostic criteria for tracking the source material from which the numerous sulfide blebs were generated by shock in these melts

    Sulfur Speciation in the Martian Regolith Component in Shergottite Glasses

    Get PDF
    We have shown that Gas-Rich Impact-Melt (GRIM) glasses in Shergotty, Zagami, and EET79001 (Lith A and Lith B) contain Martian regolith components that were molten during impact and quenched into glasses in voids of host rock materials based on neutron-capture isotopes, i.e., Sm-150 excesses and Sm-149 deficits in Sm, and Kr-80 excesses produced from Br [1, 2]. These GRIM glasses are rich in S-bearing secondary minerals [3.4]. Evidence for the occurrence of CaSO4 and S-rich aluminosilicates in these glasses is provided by CaO-SO3 and Al2O3-SO3 correlations, which are consistent with the finding of gypsum laths protruding from the molten glass in EET79001 (Lith A) [5]. However, in the case of GRIM glasses from EET79001 (Lith B), Shergotty and Zagami, we find a different set of secondary minerals that show a FeO-SO3 correlation (but no MgOSO3 correlation), instead of CaO-SO3 and Al2O3-SO3 correlations observed in Lith A. These results might indicate different fluidrock interactions near the shergottite source region on Mars. The speciation of sulfur in these salt assemblages was earlier studied by us using XANES techniques [6], where we found that Lith B predominantly contains Fe-sulfide globules (with some sulfate). On the other hand, Lith A showed predominantly Casulfite/ sulfate with some FeS. Furthermore, we found Fe to be present as Fe2+ indicating little oxidation, if any, in these glasses. To examine the sulfide-sulfate association in these glasses, we studied their Fe/Ni ratios with a view to find diagnostic clues for the source fluid. The Fe-sulfide mineral (Fe(0.93)Ni(0.3)S) in EET79001, Lith A is pyrrhotite [7, 8]. It yields an Fe/Ni ratio of 31. In Shergotty, pyrrhotite occurs with a molar ratio of Fe:S of 0.94 and a Ni abundance of 0.12% yielding a Fe/Ni ratio of approx.500 [8]. In this study, we determined a NiO content of approx.0.1% and FeO/NiO ratio of approx.420 in S-rich globules in #507 (EET79001, Lith B) sample using FE-SEM. In the same sample (bulk), using EMPA, we determined a FeO/NiO ratio of approx.700 (raster mode). Using similar techniques, we determined a NiO content of approx.0.015% and a FeO/NiO ratio of approx.800 in #506 (EET79001, Lith A). Moreover, a NiO content of approx.150 ppm and 6.1% FeO were found in Lith A GRIM glasses using neutron activation analysis [9] yielding a FeO/NiO ratio of approx.420. The FeO/NiO ratios in secondary mineral phases in S-rich pockets of EET79001 (Lith A/B) and Shergotty are high (approx.400) compared to the FeO/NiO ratio of 31 in Lith A pyrrhotite. These results suggest similar kind of fluids interacted with different rock materials to yield the observed variations in GRIM glasses in EET79001 Lith A and B

    Sulfur Isotopes in Gas-rich Impact-Melt Glasses in Shergottites

    Get PDF
    Large impact melt glasses in some shergottites contain huge amounts of Martian atmospheric gases and they are known as gas-rich impact-melt (GRIM) glasses. By studying the neutron-induced isotopic deficits and excesses in Sm-149 and Sm-150 isotopes resulting from Sm-149 (n,gamma) 150Sm reaction and 80Kr excesses produced by Br-79 (n,gamma) Kr-80 reaction in the GRIM glasses using mass-spectrometric techniques, it was shown that these glasses in shergottites EET79001 and Shergotty contain regolith materials irradiated by a thermal neutron fluence of approx.10(exp 15) n/sq cm near Martian surface. Also, it was shown that these glasses contain varying amounts of sulfates and sulfides based on the release patterns of SO2 (sulfate) and H2S (sulfide) using stepwise-heating mass-spectrometric techniques. Furthermore, EMPA and FE-SEM studies in basaltic-shergottite GRIM glasses EET79001, LithB (,507& ,69), Shergotty (DBS I &II), Zagami (,992 & ,994) showed positive correlation between FeO and "SO3" (sulfide + sulfate), whereas those belonging to olivine-phyric shergottites EET79001, LithA (,506, & ,77) showed positive correlation between CaO/Al2O3 and "SO3"

    Oxygen Isotope Systematics of Chondrules from the Least Equilibrated H Chondrite

    Get PDF
    Oxygen isotope compositions of bulk chondrules and their mineral separates in type 3 ordinary chondrites (UOC) show several % variability in the oxygen three isotope diagram with slope of approx.0.7 [1]. In contrast, ion microprobe analyses of olivine and pyroxene phenocrysts in ferromagnesian chondrules from LL 3.0-3.1 chondrites show mass dependent isotopic fractionation as large as 5% among type I (FeO-poor) chondrules, while type II (FeO-rich) chondrules show a narrow range (less than or equal to 1%) of compositions [2]. The .Delta(exp 17)O (=delta(exp 17)O-0.52xdelta(exp 18)O) values of olivine and pyroxene in these chondrules show a peak at approx.0.7% that are systematically lower than those of bulk chondrule analyses as well as the bulk LL chondrites [2]. Further analyses of glass in Semarkona chondrules show .17O values as high as +5% with highly fractionated d18O (max +18%), implying O-16-poor glass in chondrules were altered as a result of hydration in the parent body at low temperature [3]. Thus, chondrules in LL3.0-3.1 chondrites do not provide any direct evidence of oxygen isotope exchange between solid precursor and O-16-depleted gas during chondrule melting events. To compare the difference and/or similarity between chondrules from LL and H chondrites, we initiated systematic investigations of oxygen isotopes in chondrules from Yamato 793408 (H3.2), one of the least equilibrated H chondrite [4]. In our preliminary study of 4 chondrules, we reported distinct oxygen isotope ratios from dusty olivine and refractory forsterite (RF) grains compared to their host chondrules and confirmed their relict origins [5]

    Acid-Sulfate-Weathering Activity in Shergottite Sites on Mars Recorded in Grim Glasses

    Get PDF
    Based on mass spectrometric studies of sulfur species in Shergotty and EET79001, [1] and [2] showed that sulfates and sulfides occur in different proportions in shergottites. Sulfur speciation studies in gas-rich impact-melt (GRIM) glasses in EET79001 by the XANES method [3] showed that S K-XANES spectra in GRIM glasses from Lith A indicate that S is associated with Ca and Al presumably as sulfides/sulfates whereas the XANES spectra of amorphous sulfide globules in GRIM glasses from Lith B indicate that S is associated with Fe as FeS. In these amorphous iron sulfide globules, [4] found no Ni using FE-SEM and suggested that the globules resulting from immiscible sulfide melt may not be related to the igneous iron sulfides having approximately 1-3% Ni. Furthermore, in the amorphous iron sulfides from 507 GRIM glass, [5] determined delta(sup 34)S values ranging from +3.5%o to -3.1%o using Nano-SIMS. These values plot between the delta(sup 34)S value of +5.25%o determined in the sulfate fraction in Shergotty [6] at one extreme and the value of -1.7%o obtained for igneous sulfides in EET79001 and Shergotty [7] at the other. These results suggest that the amorphous Fe-S globules likely originated by shock reduction of secondary iron sulfate phases occurring in the regolith precursor materials during impact [7]. Sulfates in the regolith materials near the basaltic shergottite sites on Mars owe their origin to surficial acid-sulfate interactions. We examine the nature of these reactions by studying the composition of the end products in altered regolith materials. For the parent material composition, we use that of the host shergottite material in which the impact glasses are situated

    A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast

    Get PDF
    Extracellular cues regulate cell fate, and this is mainly achieved through the engagement of specific transcriptional programs. The TORC1 and TORC2 complexes mediate the integration of nutritional cues to cellular behavior, but their interplay is poorly understood. Here, we use fission yeast to investigate how phosphatase activity participates in this interplay during the switch from proliferation to sexual differentiation. We find that loss of PP2A-B55Pab1^{Pab1} enhances the expression of differentiation-specific genes and leads to premature conjugation. pab1\textit{pab1} deletion brings about a transcriptional profile similar to TORC1 inactivation, and deletion of pab1\textit{pab1} overcomes the repression of differentiation genes in cells overexpressing TORC1. Importantly, we show that this effect is mediated by an increased TORC2-AKT (Gad8) signaling. Under nutrient-rich conditions, PP2A-B55Pab1^{Pab1} dephosphorylates Gad8 Ser546, repressing its activity. Conversely, TORC1 inactivation upon starvation leads to the inactivation of PP2A-B55Pab1^{Pab1} through the Greatwall-Endosulfin pathway. This results in the activation of Gad8 and the commitment to differentiation. Thus, PP2A-B55Pab1^{Pab1} enables a crosstalk between the two TOR complexes that controls cell-fate decisions in response to nutrient availability.We thank Dominique Helmlinger and Sergio Moreno for sharing unpublished results and strains, and for stimulating discussion. We thank Janni Petersen, Ronit Weisman, Kazuhiro Shiozaki, Mitsuhiro Yanagida, and Hisao Masukata for strains, constructs, and antibodies. We thank Toni Hurtado and Beata Grallert for critical reading of the manuscript. This work was supported by NFR FRIMEDBIO grant 214049. M.P. is the recipient of a Kreftforeningen postdoctoral fellowship (grant 5843744). N.C. has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-COFUND) under grant agreement 609020 - Scientia Fellows. J.M. was supported by BBSRC research grants BB/N007697/1 and BB/M021483/1

    On Free-Electron Laser Growing Modes and their Bandwidth

    Full text link
    Free-electron lasers play an increasing role in science, from generating unique femtosecond X- ray pulses for single short recording of the protein structures to amplifying feeble interactions in advanced cooling systems for high-energy hadron colliders. While modern Free-electron laser codes can describe their amplification mechanism, a deep analytical understanding of the mechanism is of extreme importance for a number of applications. Mode competition, their growth rates and amplification bandwidth are among the most important parameters of a free-electron laser. A dispersion relation, which defines these important characteristics, can be solved analytically only for a very few simple cases. In this letter we show that for a typical bell-shape energy distribution in electron beam there is no more that one growing mode. We also derive an analytical expression which determines the bandwidth of the free-electron laser.Comment: 4 pages, submitted to PR
    • …
    corecore