621 research outputs found
Spin-filter effect of the europium chalcogenides: An exactly solved many-body model
A model Hamiltonian is introduced which considers the main features of the
experimental spin filter situation as s-f interaction, planar geometry and the
strong external electric field. The proposed many-body model can be solved
analytically and exactly using Green functions.
The spin polarization of the field-emitted electrons is expressed in terms of
spin-flip probabilities, which on their part are put down to the exactly known
dynamic quantities of the system.
The calculated electron spin polarization shows remarkable dependencies on
the electron velocity perpendicular to the emitting plane and the strength of
s-f coupling. Experimentally observed polarization values of about 90% are well
understood within the framework of the proposed model.Comment: accepted (Physical Review B); 10 pages, 11 figures;
http://orion.physik.hu-berlin.de
The temperature dependent bandstructure of a ferromagnetic semiconductor film
The electronic quasiparticle spectrum of a ferromagnetic film is investigated
within the framework of the s-f model. Starting from the exact solvable case of
a single electron in an otherwise empty conduction band being exchange coupled
to a ferromagnetically saturated localized spin system we extend the theory to
finite temperatures. Our approach is a moment-conserving decoupling procedure
for suitable defined Green functions. The theory for finite temperatures
evolves continuously from the exact limiting case. The restriction to zero
conduction band occupation may be regarded as a proper model description for
ferromagnetic semiconductors like EuO and EuS. Evaluating the theory for a
simple cubic film cut parallel to the (100) crystal plane, we find some marked
correlation effects which depend on the spin of the test electron, on the
exchange coupling, and on the temperature of the local-moment system.Comment: 11 pages, 9 figure
Spin-polarized tunneling currents through a ferromagnetic insulator between two metallic or superconducting leads
Using the Keldysh formalism the tunneling current through a hybrid structure
where a confined magnetic insulator (I) is sandwiched between two non-magnetic
leads is calculated. The leads can be either normal metals (M) or
superconductors (S). Each region is modelled as a single band in tight-binding
approximation in order to understand the formation of the tunneling current as
clearly as possible. The tunneling process itself is simulated by a
hybridization between the lead and insulator conduction bands. The insulator is
assumed to have localized moments which can interact with the tunneling
electrons. This is described by the Kondo Lattice Model (KLM) and treated
within an interpolating self-energy approach. For the superconductor the
mean-field BCS theory is used. The spin polarization of the current shows a
strong dependence both on the applied voltage and the properties of the
materials. Even for this idealized three band model there is a qualitative
agreement with experiment.Comment: 15 pages, 23 figures, accepted for publication in PR
Quantum effects in the quasiparticle structure of the ferromagnetic Kondo lattice model
A new ``Dynamical Mean-field theory'' based approach for the Kondo lattice
model with quantum spins is introduced. The inspection of exactly solvable
limiting cases and several known approximation methods, namely the second-order
perturbation theory, the self-consistent CPA and finally a moment-conserving
decoupling of the equations of motion help in evaluating the new approach. This
comprehensive investigation gives some certainty to our results: Whereas our
method is somewhat limited in the investigation of the J<0-model, the results
for J>0 reveal important aspects of the physics of the model: The energetically
lowest states are not completely spin-polarized.A band splitting, which occurs
already for relatively low interaction strengths, can be related to distinct
elementary excitations, namely magnon emission (absorption) and the formation
of magnetic polarons. We demonstrate the properties of the ferromagnetic Kondo
lattice model in terms of spectral densities and quasiparticle densities of
states.Comment: 19 pages, 4 figure
Carrier induced ferromagnetism in concentrated and diluted local-moment systems
For modeling the magnetic properties of concentrated and diluted magnetic
semiconductors, we use the Kondo-lattice model. The magnetic phase diagram is
derived by inspecting the static susceptibility of itinerant band electrons,
which are exchange coupled to localized magnetic moments. It turns out that
rather low band occupations favour a ferromagnetic ordering of the local moment
systems due to an indirect coupling mediated by a spin polarization of the
itinerant charge carriers. The disorder in diluted systems is treated by adding
a CPA-type concept to the theory. For almost all moment concentrations x,
ferromagnetism is possible, however, only for carrier concentrations n
distinctly smaller than x. The charge carrier compensation in real magnetic
semiconductors (in Ga_{1-x}Mn_{x}As by e.g. antisites) seems to be a necessary
condition for getting carrier induced ferromagnetism.Comment: 9 pages (REVTeX), 6 figures, to be published in Phys. Rev.
Kondo-lattice model: Application to the temperature-dependent electronic structure of EuO(100) films
We present calculations for the temperature-dependent electronic structure
and magnetic properties of thin ferromagnetic EuO films. The treatment is based
on a combination of a multiband-Kondo lattice model with first-principles
TB-LMTO band structure calculations. The method avoids the problem of
double-counting of relevant interactions and takes into account the correct
symmetry of the atomic orbitals. We discuss the temperature-dependent
electronic structures of EuO(100) films in terms of quasiparticle densities of
states and quasiparticle band structures. The Curie temperature T_C of the EuO
films turns out to be strongly thickness-dependent, starting from a very low
value = 15K for the monolayer and reaching the bulk value at about 25 layers
The absence of finite-temperature phase transitions in low-dimensional many-body models: a survey and new results
After a brief discussion of the Bogoliubov inequality and possible
generalizations thereof, we present a complete review of results concerning the
Mermin-Wagner theorem for various many-body systems, geometries and order
parameters. We extend the method to cover magnetic phase transitions in the
periodic Anderson Model as well as certain superconducting pairing mechanisms
for Hubbard films. The relevance of the Mermin-Wagner theorem to approximations
in many-body physics is discussed on a conceptual level.Comment: 33 pages; accepted for publication as a Topical Review in Journal of
Physics: Condensed Matte
Influence of Spin Wave Excitations on the Ferromagnetic Phase Diagram in the Hubbard-Model
The subject of the present paper is the theoretical description of collective
electronic excitations, i.e. spin waves, in the Hubbard-model. Starting with
the widely used Random-Phase-Approximation, which combines Hartree-Fock theory
with the summation of the two-particle ladder, we extend the theory to a more
sophisticated single particle approximation, namely the
Spectral-Density-Ansatz. Doing so we have to introduce a `screened`
Coulomb-interaction rather than the bare Hubbard-interaction in order to obtain
physically reasonable spinwave dispersions. The discussion following the
technical procedure shows that comparison of standard RPA with our new
approximation reduces the occurrence of a ferromagnetic phase further with
respect to the phase-diagrams delivered by the single particle theories.Comment: 8 pages, 9 figures, RevTex4, accepted for publication in Phys. Rev.
Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals
CVV Auger electron spectra are calculated for a multi-band Hubbard model
including correlations among the valence electrons as well as correlations
between core and valence electrons. The interest is focused on the
ferromagnetic 3d-transition metals. The Auger line shape is calculated from a
three-particle Green function. A realistic one-particle input is taken from
tight-binding band-structure calculations. Within a diagrammatic approach we
can distinguish between the \textit{direct} correlations among those electrons
participating in the Auger process and the \textit{indirect} correlations in
the rest system. The indirect correlations are treated within second-order
perturbation theory for the self-energy. The direct correlations are treated
using the valence-valence ladder approximation and the first-order perturbation
theory with respect to valence-valence and core-valence interactions. The
theory is evaluated numerically for ferromagnetic Ni. We discuss the
spin-resolved quasi-particle band structure and the Auger spectra and
investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press
- …