275 research outputs found

    Stepping ahead based hybridization of meta - heuristic model for solving global optimization problems

    Get PDF
    Intelligent optimization algorithms based on swarm principles have been widely researched in recent times. The Firefly Algorithm (FA) is an intelligent swarm algorithm for global optimization problems. In literature, FA has been seen as one of the efficient and robust optimization algorithm. However, the solution search space used in FA is insufficient, and the strategy for generating candidate solutions results in good exploration ability but poor exploitation performance. Although, there are a lot of modifications and hybridizations of FA with other optimizing algorithms, there is still a room for improvement. Therefore, in this paper, we first propose modification of FA by introducing a stepping ahead parameter. Second, we design a hybrid of modified FA with Covariance Matrix Adaptation Evolution Strategy (CMAES) to improve the exploitation while containing good exploration. Traditionally, hybridization meant to combine two algorithms together in terms of structure only, and preference was not taken into account. To solve this issue, preference in terms of user and problem (time complexity) is taken where CMAES is used within FA's loop to avoid extra computation time. This way, the structure of algorithm together with the strength of the individual solution are used. In this paper, FA is modified first and later combined with CMAES to solve selected global optimization benchmark problems. The effectiveness of the new hybridization is shown with the performance analysis

    Modified Neuron-Synapse level problem decomposition method for Cooperative Coevolution of Feedforward Networks for Time Series Prediction

    Get PDF
    Complex problems have been solved efficiently through decomposition of a particular problem using problem decompositions. Even combination of different distinct problem decomposition methods has shown good results in time series prediction. The application of different problem decomposition methods at different stages of a network can share its strengths to solve the problem in hand better. Hybrid versions of two distinct problem decomposition methods has showed promising results in past. In this paper, a modified version of latterly introduced Neuron-Synapse level problem decomposition is proposed using feedforward neural networks for time series prediction. The results shows that the proposed modified model has got better results in more datasets when compared to its previous version. The results are better in some cases for proposed method in comparison to several other methods from the literature

    Addressing a single NV−^{-} spin with a macroscopic dielectric microwave cavity

    Full text link
    We present a technique for addressing single NV−^{-} center spins in diamond over macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically detected magnetic resonance (ODMR) for a single NV−^{-} center in a nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the distribution of the cavity magnetic field along one axis. In addition, we argue that our system could be used to determine the orientation of the NV−^{-} major axis in a straightforward manner

    Extent of single-neuron activity modulation by hippocampal interictal discharges predicts declarative memory disruption in humans

    Get PDF
    Memory deficits are common in epilepsy patients. In these patients, the interictal EEG commonly shows interictal epileptiform discharges (IEDs). While IEDs are associated with transient cognitive impairments, it remains poorly understood why this is. We investigated the effects of human (male and female) hippocampal IEDs on single-neuron activity during a memory task in patients with medically refractory epilepsy undergoing depth electrode monitoring. We quantified the effects of hippocampal IEDs on single-neuron activity and the impact of this modulation on subjectively declared memory strength. Across all recorded neurons, the activity of 50 of 728 neurons were significantly modulated by IEDs, with the strongest modulation in the medial temporal lobe (33 of 416) and in particular the right hippocampus (12 of 58). Putative inhibitory neurons, as identified by their extracellular signature, were more likely to be modulated by IEDs than putative excitatory neurons (19 of 157 vs 31 of 571). Behaviorally, the occurrence of hippocampal IEDs was accompanied by a disruption of recognition of familiar images only if they occurred up to 2 s before stimulus onset. In contrast, IEDs did not impair encoding or recognition of novel images, indicating high temporal and task specificity of the effects of IEDs. The degree of modulation of individual neurons by an IED correlated with the declared confidence of a retrieval trial, with higher firing rates indicative of reduced confidence. Together, these data link the transient modulation of individual neurons by IEDs to specific declarative memory deficits in specific cell types, thereby revealing a mechanism by which IEDs disrupt medial temporal lobe-dependent declarative memory retrieval processes
    • …
    corecore