985 research outputs found

    Review of Solar Neutrino Experiments

    Full text link
    This paper reviews the constraints on the solar neutrino mixing parameters with data collected by the Homestake, SAGE, GALLEX, Kamiokande, SuperKamiokande, and SNO experiments. An emphasis will be given to the global solar neutrino analyses in terms of matter-enhanced oscillation of two active flavors. The results to-date, including both solar model dependent and independent measurements, indicate that electron neutrinos are changing to other active types on route to the Earth from the Sun. The total flux of solar neutrinos is found to be in very good agreement with solar model calculations. Future measurements will focus on greater accuracy for mixing parameters and on better sensitivity to low neutrino energies.Comment: Prepared for the XXI International Symposium on Lepton and Photon Interactions at High Energies, Fermilab, USA, 11-16 August 200

    Neutrino magnetic moments, flavor mixing, and the SuperKamiokande solar data

    Get PDF
    We find that magnetic neutrino-electron scattering is unaffected by oscillations for vacuum mixing of Dirac neutrinos with only diagonal moments and for Majorana neutrinos with two flavors. For MSW mixing, these cases again obtain, though the effective moments can depend on the neutrino energy. Thus, e.g., the magnetic moments measured with νˉe\bar{\nu}_e from a reactor and νe\nu_e from the Sun could be different. With minimal assumptions, we find a new limit on μν\mu_{\nu} using the 825-days SuperKamiokande solar neutrino data: μν1.5×1010μB|\mu_{\nu}| \le 1.5\times 10^{-10} \mu_B at 90% CL, comparable to the existing reactor limit.Comment: 4 pages including two inline figures. New version has 825 days SK result, some minor revisions. Accepted for Physical Review Letter

    Large Extra Dimensions, Sterile neutrinos and Solar Neutrino Data

    Full text link
    Solar, atmospheric and LSND neutrino oscillation results require a light sterile neutrino, νB\nu_B, which can exist in the bulk of extra dimensions. Solar νe\nu_e, confined to the brane, can oscillate in the vacuum to the zero mode of νB\nu_B and via successive MSW transitions to Kaluza-Klein states of νB\nu_B. This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum.Comment: 4 pages, 2 figure

    Solar and atmospheric neutrino oscillations with three flavours

    Full text link
    We analyze the solar and the atmospheric neutrino problems in the context of three flavour neutrino oscillations. We assume a mass hierarchy in the vacuum mass eigenvalues μ32μ22μ12\mu_3^2 \gg \mu_2^2 \geq \mu_1^2, but make no approximation regarding the magnitudes of the mixing angles. We find that there are small but continuous bands in the parameter space where the constraints imposed by the current measurements of  71Ga \ {}^{71} Ga, 37Cl{}^{37} Cl and Kamiokande experiments are satisfied at 1σ1 \sigma level. The allowed parameter space increases dramatically if the error bars are enlarged to 1.6σ1.6 \sigma. The electron neutrino survival probability has different energy dependence in different regions of the parameter space. Measurement of the recoil electron energy spectrum in detectors that use νe\nu - e scattering may distinguish between some of the allowed regions of parameter space. Finally we use the results for the parameter space admitted by the solar neutrinos as an input for the atmospheric neutrino problem and show that there exists a substantial region of parameter space in which both problems can be solved.Comment: 25 pages plus eight figures. Uses Revtex. Postcript files for figures sent separately as a uuencoded fil

    A new fit to solar neutrino data in models with large extra dimensions

    Full text link
    String inspired models with millimeter scale extra dimensions provide a natural way to understand an ultralight sterile neutrino needed for a simultaneous explanation of the solar, atmospheric and LSND neutrino oscillation results. The sterile neutrino is the bulk neutrino (νB\nu_B) postulated to exist in these models, and it becomes ultralight in theories that prevent the appearance of its direct mass terms. Its Kaluza-Klein (KK) states then add new oscillation channels for the electron neutrino emitted from the solar core. We show that successive MSW transitions of solar νe\nu_e to the lower lying KK modes of νB\nu_B in conjunction with vacuum oscillations between the νe\nu_e and the zero mode of νB\nu_B provide a new way to fit the solar neutrino data. Using just the average rates from the three types of solar experiments, we predict the Super-Kamiokande spectrum with 73\% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum. We discuss both intermediate and low string scale models where the desired phenomenology can emerge naturally.Comment: 20 pages, contains updated SuperK results and reference

    RFSoC-based front-end electronics for pulse detection

    Full text link
    Radiation measurement relies on pulse detection, which can be performed using various configurations of high-speed analog-to-digital converters (ADCs) and field-programmable gate arrays (FPGAs). For optimal power consumption, design simplicity, system flexibility, and the availability of DSP slices, we consider the Radio Frequency System-on-Chip (RFSoC) to be a more suitable option than traditional setups. To this end, we have developed custom RFSoC-based electronics and verified its feasibility. The ADCs on RFSoC exhibit a flat frequency response of 1-125 MHz. The root-mean-square (RMS) noise level is 2.1 ADC without any digital signal processing. The digital signal processing improves the RMS noise level to 0.8 ADC (input equivalent 40 Vrms). Baseline correction via digital signal processing can effectively prevent photomultiplier overshoot after a large pulse. Crosstalk between all channels is less than -55 dB. The measured data transfer speed can support up to 32 kHz trigger rates (corresponding to 750 Mbps). Overall, our RFSoC-based electronics are highly suitable for pulse detection, and after some modifications, they will be employed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND).Comment: 14 pages, 13 figure
    corecore