4,754 research outputs found

    The 1/N-expansion, quantum-classical correspondence and nonclassical states generation in dissipative higher-order anharmonic oscillators

    Full text link
    We develop a method for the determination of thecdynamics of dissipative quantum systems in the limit of large number of quanta N, based on the 1/N-expansion of Heidmann et al. [ Opt. Commun. 54, 189 (1985) ] and the quantum-classical correspondence. Using this method, we find analytically the dynamics of nonclassical states generation in the higher-order anharmonic dissipative oscillators for an arbitrary temperature of a reservoir. We show that the quantum correction to the classical motion increases with time quadratically up to some maximal value, which is dependent on the degree of nonlinearity and a damping constant, and then it decreases. Similarities and differences with the corresponding behavior of the quantum corrections to the classical motion in the Hamiltonian chaotic systems are discussed. We also compare our results obtained for some limiting cases with the results obtained by using other semiclassical tools and discuss the conditions for validity of our approach.Comment: 15 pages, RevTEX (EPSF-style), 3 figs. Replaced with final version (stylistic corrections

    A dynamical collective calculation of supernova neutrino signals

    Full text link
    We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydroynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.Comment: 4 pages, 5 figure

    Equilibrium configurations of two charged masses in General Relativity

    Full text link
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    Direct current generation due to harmonic mixing: From bulk semiconductors to semiconductor superlattices

    Get PDF
    We discuss an effect of dc current and dc voltage (stopping bias) generation in a semiconductor superlattice subjected by an ac electric field and its phase-shifted n-th harmonic. In the low field limit, we find a simple dependence of dc voltage on a strength, frequency, and relative phase of mixing harmonics for an arbitrary even value of n. We show that the generated dc voltage has a maximum when a frequency of ac field is of the order of a scattering constant of electrons in a superlattice. This means that for typical semiconductor superlattices at room temperature operating in the THz frequency domain the effect is really observable. We also made a comparison of a recent paper describing an effect of a directed current generation in a semiconductor superlattice subjected by ac field and its second harmonic (n=2) [K.Seeger, Appl.Phys.Lett. 76(2000)82] with our earlier findings describing the same effect [K.Alekseev et al., Europhys. Lett. 47(1999)595; cond-mat/9903092 ]. For the mixing of an ac field and its n-th harmonic with n>=4, we found that additionally to the phase-shift controlling of the dc current, there is a frequency control. This frequency controlling of the dc current direction is absent in the case of n=2. The found effect is that, both the dc current suppression and the dc current reversals exist for some particular values of ac field frequency. For typical semiconductor superlattices such an interesting behavior of the dc current should be observable also in the THz domain. Finally, we briefly review the history of the problem of the dc current generation at mixing of harmonics in semiconductors and semiconductor microstructures.Comment: 9 pages, 1 figure, RevTEX, EPS

    Optical chaos in nonlinear photonic crystals

    Get PDF
    We examine a spatial evolution of lightwaves in a nonlinear photonic crystal with a quadratic nonlinearity when simultaneously a second harmonic and a sum-frequency generation are quasi-phase-matched. We find the conditions of a transition to Hamiltonian chaos for different amplitudes of lightwaves at the boundary of the crystal.Comment: LaTEX2e, 5 pages, 4 figure
    • …
    corecore