179 research outputs found

    Within-plant variation in rosmarinus officinalis l. Terpenes and phenols and their antimicrobial activity against the rosemary phytopathogens alternaria alternata and pseudomonas viridiflava

    Get PDF
    This study investigated within-plant variability of the main bioactive compounds in rosemary (Rosmarinus officinalis L.). Volatile terpenes, including the enantiomeric distribution of monoterpenes, and phenols were analyzed in young and mature foliar, cortical and xylem tissues. In addition, antimicrobial activity of rosmarinic acid and selected terpenes was evaluated against two rosemary pathogens, Alternaria alternata and Pseudomonas viridiflava. Data showed that total concentration and relative contents of terpenes changed in relation to tissue source and age. Their highest total concentration was observed in the young leaves, followed by mature leaves, cortical and xylem tissues. Rosmarinic acid and carnosic acid contents did not show significant differences between leaf tissues of different ages, while young and mature samples showed variations in the content of four flavonoids. These results are useful for a more targeted harvesting of rosemary plants, in order to produce high-quality essential oils and phenolic extracts. Microbial tests showed that several terpenes and rosmarinic acid significantly inhibited the growth of typical rosemary pathogens. Overall, results on antimicrobial activity suggest the potential application of these natural compounds as biochemical markers in breeding programs aimed to select new chemotypes less susceptible to pathogen attacks, and as eco-friendly chemical alternatives to synthetic pesticides

    Phenolic extracts from extra virgin olive oils inhibit dipeptidyl peptidase iv activity: In vitro, cellular, and in silico molecular modeling investigations

    Get PDF
    Two extra virgin olive oil (EVOO) phenolic extracts (BUO and OMN) modulate DPP-IV activity. The in vitro DPP-IV activity assay was performed at the concentrations of 1, 10, 100, 500, and 1000 μg/mL, showing a dose-dependent inhibition by 6.8 ± 1.9, 17.4 ± 6.1, 37.9 ± 2.4, 57.8 ± 2.9, and 81 ± 1.4% for BUO and by 5.4 ± 1.7, 8.9 ± 0.4, 28.4 ± 7.2, 52 ± 1.3, and 77.5 ± 3.5% for OMN. Moreover, both BUO and OMN reduced the DPP-IV activity expressed by Caco-2 cells by 2.9 ± 0.7, 44.4 ± 0.7, 61.2 ± 1.8, and 85 ± 4.2% and by 3 ± 1.9, 35 ± 9.4, 60 ± 7.2, and 82 ± 2.8%, respectively, at the same doses. The concentration of the most abundant and representative secoiridoids within both extracts was analyzed by nuclear magnetic resonance ((1)H-NMR). Oleuropein, oleacein, oleocanthal, hydroxytyrosol, and tyrosol, tested alone, reduced the DPP-IV activity, with IC(50) of 472.3 ± 21.7, 187 ± 11.4, 354.5 ± 12.7, 741.6 ± 35.7, and 1112 ± 55.6 µM, respectively. Finally, in silico molecular docking simulations permitted the study of the binding mode of these compounds

    Comparison between in vitro chemical and ex vivo biological assays to evaluate antioxidant capacity of botanical extracts

    Get PDF
    The anti-oxidative activity of plant-derived extracts is well-known and confers health-promoting effects on functional foods and food supplements. Aim of this work is to evaluate the capability of two different assays to predict the real biological antioxidant efficiency. At this purpose, extracts from five different plant-derived matrices and commercial purified phytochemicals were analyzed for their anti-oxidative properties by using well-standardized in vitro chemical method (TEAC) and an ex vivo biological assay. The biological assay, a cellular membrane system obtained from erythrocytes of healthy volunteers, is based on the capability of phytochemicals treatment to prevent membrane lipid peroxidation under oxidative stress by UV-B radiation. Plant extracts naturally rich in phenols with different structure and purified phytochemicals showed different in vitro and ex vivo antioxidant capacities. A high correlation between phenolic contents of the plant-derived extracts and their ability to prevent oxidative injuries in a biological system was found, thus underlying the relevance of this class of metabolites in preventing oxidative stress. On the other hand, a low correlation between the antioxidant capacities was shown between in vitro and ex vivo antioxidant assay. Moreover, data presented in this work show how food complex matrices are more effective in preventing oxidative damages at biological level than pure phytochemicals, even if for these latter, the antioxidant activity was generally higher than that observed for food complex matrices

    Extra virgin olive oil phenol extracts exert hypocholesterolemic effects through the modulation of the LDLR pathway: In vitro and cellular mechanism of action elucidation

    Get PDF
    This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for total phenols, a recently validated hydrolytic procedure for total hydroxytyrosol and tyrosol, and1 H-NMR analysis in order to assess their secoiridoid profiles. Both of the extracts inhibited in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a dose-dependent manner. After the treatment of human hepatic HepG2 cells (25 µg/mL), they increased the low-density lipoprotein (LDL) receptor protein levels through the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, leading to a better ability of HepG2 cells to uptake extracellular LDL molecules with a final hypocholesterolemic effect. Moreover, both of the extracts regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Unlike pravastatin, they did not produce any unfavorable effect on proprotein convertase subtilisin/kexin 9 (PCSK9) protein level. Finally, the fact that extracts with different secoiridoid profiles induce practically the same biological effects suggests that the hydroxytyrosol and tyrosol derivatives may have similar roles in hypocholesterolemic activity

    Paving the way to food grade analytical chemistry: use of a natural deep eutectic solvent to determine total hydroxytyrosol and tyrosol in extra virgin olive oils

    Get PDF
    Extra virgin olive oil (EVOO) is well known for containing relevant amounts of healthy phenolic compounds. The European Food Safety Authority (EFSA) allowed a health claim for labelling olive oils containing a minimum amount of hydroxytyrosol (OHTyr) and its derivatives, including tyrosol (Tyr). Therefore, harmonized and standardized analytical protocols are required in support of an effective application of the health claim. Acid hydrolysis performed after extraction and before chromatographic analysis has been shown to be a feasible approach. Nevertheless, other fast, green, and easy methods could be useful for on-site screening and monitoring applications. In the present research, a natural deep eutectic solvent (NADES) composed of lactic acid and glucose was used to perform a liquid/liquid extraction on EVOO samples, followed by UV-spectrophotometric analysis. The spectral features of the extracts were related with the content of total OHTyr and Tyr, determined by the acid hydrolysis method. The second derivative of spectra allowed focusing on three single wavelengths (i.e., 299 nm, 290 nm, and 282 nm) significantly related with total OHTyr, total Tyr, and their sum, respectively. In particular, the sum of OHTyr and Tyr could be determined with a root mean square error of prediction of 29.5 mg/kg, while the limits of quantitation and detection were respectively 11.8 and 4.9 mg/kg. The proposed method, therefore, represents an easy screening tool, with the use of a green, food-derived solvent, and could be considered as an attempt to pave the way for food grade analytical chemistry

    Extra virgin olive oil phenol extracts exert hypocholesterolemic effects through the modulation of the LDLR pathway: In vitro and cellular mechanism of action elucidation

    Get PDF
    This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for total phenols, a recently validated hydrolytic procedure for total hydroxytyrosol and tyrosol, and 1H-NMR analysis in order to assess their secoiridoid profiles. Both of the extracts inhibited in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a dose-dependent manner. After the treatment of human hepatic HepG2 cells (25 µg/mL), they increased the low-density lipoprotein (LDL) receptor protein levels through the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, leading to a better ability of HepG2 cells to uptake extracellular LDL molecules with a final hypocholesterolemic effect. Moreover, both of the extracts regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Unlike pravastatin, they did not produce any unfavorable effect on proprotein convertase subtilisin/kexin 9 (PCSK9) protein level. Finally, the fact that extracts with different secoiridoid profiles induce practically the same biological effects suggests that the hydroxytyrosol and tyrosol derivatives may have similar roles in hypocholesterolemic activity

    Characterization of arils juice and peel decoction of fifteen varieties of punica granatum l.: a focus on anthocyanins, ellagitannins and polysaccharides

    Get PDF
    Pomegranate is receiving renewed commercial and scientific interest, therefore a deeper knowledge of the chemical composition of the fruits of less studied varieties is required. In this work, juices from arils and decoctions from mesocarp plus exocarp were prepared from fifteen varieties. Samples were submitted to High Performance Liquid Chromatography—Diode Array Detector–Mass Spectrometry, spectrophotometric and colorimetric CIEL* a* b* analyses. Antioxidant, antiradical and metal chelating properties, inhibitory activity against tyrosinase and α-amylase enzymes were also evaluated. All varieties presented the same main phenols; anthocyanins and ellagitannins were widely variable among varieties, with the richest anthocyanin content in the juices from the Wonderful and Soft Seed Maule varieties (approx. 660 mg/L) and the highest ellagitannin content in the peel of the Black variety (approx. 133 mg/g dry matter). A good correlation was shown between the colour hue and the delphinidin/cyanidin ratio in juices (R 2= 0.885). Total polysaccharide yield ranged from 3% to 12% of the peels’ dry weight, with the highest content in the Black variety. Decoctions (24.44–118.50 mg KAE/g) showed better in vitro antioxidant properties and higher inhibitory capacity against tyrosinase than juices (not active-16.56 mg KAE/g); the inhibitory capacity against α-amylase was similar and quite potent for juices and decoctions. Knowledge about the chemical composition of different pomegranate varieties will allow for a more aware use of the different parts of the fruit
    • …
    corecore