22,000 research outputs found
Accurate determination of the Lagrangian bias for the dark matter halos
We use a new method, the cross power spectrum between the linear density
field and the halo number density field, to measure the Lagrangian bias for
dark matter halos. The method has several important advantages over the
conventional correlation function analysis. By applying this method to a set of
high-resolution simulations of 256^3 particles, we have accurately determined
the Lagrangian bias, over 4 magnitudes in halo mass, for four scale-free models
with the index n=-0.5, -1.0, -1.5 and -2.0 and three typical CDM models. Our
result for massive halos with ( is a characteristic non-linear
mass) is in very good agreement with the analytical formula of Mo & White for
the Lagrangian bias, but the analytical formula significantly underestimates
the Lagrangian clustering for the less massive halos $M < M_*. Our simulation
result however can be satisfactorily described, with an accuracy better than
15%, by the fitting formula of Jing for Eulerian bias under the assumption that
the Lagrangian clustering and the Eulerian clustering are related with a linear
mapping. It implies that it is the failure of the Press-Schechter theories for
describing the formation of small halos that leads to the inaccuracy of the Mo
& White formula for the Eulerian bias. The non-linear mapping between the
Lagrangian clustering and the Eulerian clustering, which was speculated as
another possible cause for the inaccuracy of the Mo & White formula, must at
most have a second-order effect. Our result indicates that the halo formation
model adopted by the Press-Schechter theories must be improved.Comment: Minor changes; accepted for publication in ApJ (Letters) ; 11 pages
with 2 figures include
The time-evolution of bias
We study the evolution of the bias factor b and the mass-galaxy correlation
coefficient r in a simple analytic model for galaxy formation and the
gravitational growth of clustering. The model shows that b and r can be
strongly time-dependent, but tend to approach unity even if galaxy formation
never ends as the gravitational growth of clustering debiases the older
galaxies. The presence of random fluctuations in the sites of galaxy formation
relative to the mass distribution can cause large and rapidly falling bias
values at high redshift.Comment: 4 pages, with 2 figures included. Typos corrected to match published
ApJL version. Color figure and links at http://www.sns.ias.edu/~max/bias.html
or from [email protected]
An Analytical Approach to Inhomogeneous Structure Formation
We develop an analytical formalism that is suitable for studying
inhomogeneous structure formation, by studying the joint statistics of dark
matter halos forming at two points. Extending the Bond et al. (1991) derivation
of the mass function of virialized halos, based on excursion sets, we derive an
approximate analytical expression for the ``bivariate'' mass function of halos
forming at two redshifts and separated by a fixed comoving Lagrangian distance.
Our approach also leads to a self-consistent expression for the nonlinear
biasing and correlation function of halos, generalizing a number of previous
results including those by Kaiser (1984) and Mo & White (1996). We compare our
approximate solutions to exact numerical results within the excursion-set
framework and find them to be consistent to within 2% over a wide range of
parameters. Our formalism can be used to study various feedback effects during
galaxy formation analytically, as well as to simply construct observable
quantities dependent on the spatial distribution of objects. A code that
implements our method is publicly available at
http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added,
Figure 2 axis relabele
An excursion set model of the cosmic web: The abundance of sheets, filaments and halos
We discuss an analytic approach for modeling structure formation in sheets,
filaments and knots. This is accomplished by combining models of triaxial
collapse with the excursion set approach: sheets are defined as objects which
have collapsed along only one axis, filaments have collapsed along two axes,
and halos are objects in which triaxial collapse is complete. In the simplest
version of this approach, which we develop here, large scale structure shows a
clear hierarchy of morphologies: the mass in large-scale sheets is partitioned
up among lower mass filaments, which themselves are made-up of still lower mass
halos. Our approach provides analytic estimates of the mass fraction in sheets,
filaments and halos, and its evolution, for any background cosmological model
and any initial fluctuation spectrum. In the currently popular CDM
model, our analysis suggests that more than 99% of the cosmic mass is in
sheets, and 72% in filaments, with mass larger than at the
present time. For halos, this number is only 46%. Our approach also provides
analytic estimates of how halo abundances at any given time correlate with the
morphology of the surrounding large-scale structure, and how halo evolution
correlates with the morphology of large scale structure.Comment: 22 pages, 7 figures, Accepted for publication in Ap
The cosmological light-cone effect on the power spectrum of galaxies and quasars in wide-field redshift surveys
We examine observational consequences of the cosmological light-cone effect
on the power spectrum of the distribution of galaxies and quasars from upcoming
redshift surveys. First we derive an expression for the power spectrum of
cosmological objects in real space on a light cone, , which is exact in linear theory of density perturbations. Next we
incorporate corrections for the nonlinear density evolution and redshift-space
distortion in the formula in a phenomenological manner which is consistent with
recent numerical simulations. On the basis of this formula, we predict the
power spectrum of galaxies and quasars on the light cone for future redshift
surveys taking account of the selection function properly. We demonstrate that
this formula provides a reliable and useful method to compute the power
spectrum on the light cone given an evolution model of bias.Comment: 18 pages, 3 figures, to be published in the Astrophysical Journa
Scaling properties of the redshift power spectrum: theoretical models
We report the results of an analysis of the redshift power spectrum
in three typical Cold Dark Matter (CDM) cosmological models, where
is the cosine of the angle between the wave vector and the line-of-sight.
Two distinct biased tracers derived from the primordial density peaks of
Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are
considered in addition to the pure dark matter models. Based on a large set of
high resolution simulations, we have measured the redshift power spectrum for
the three tracers from the linear to the nonlinear regime. We investigate the
validity of the relation - guessed from linear theory - in the nonlinear regime
where
is the real space power spectrum, and equals . The
damping function which should generally depend on , , and
, is found to be a function of only one variable
. This scaling behavior extends into the nonlinear regime,
while can be accurately expressed as a Lorentz function - well known from
linear theory - for values . The difference between
and the pairwise velocity dispersion defined by the 3-D peculiar velocity of
the simulations (taking ) is about 15%. Therefore is a
good indicator of the pairwise velocity dispersion. The exact functional form
of depends on the cosmological model and on the bias scheme. We have given
an accurate fitting formula for the functional form of for the models
studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include
Unusually Large Fluctuations in the Statistics of Galaxy Formation at High Redshift
We show that various milestones of high-redshift galaxy formation, such as
the formation of the first stars or the complete reionization of the
intergalactic medium, occurred at different times in different regions of the
universe. The predicted spread in redshift, caused by large-scale fluctuations
in the number density of galaxies, is at least an order of magnitude larger
than previous expectations that argued for a sharp end to reionization. This
cosmic scatter in the abundance of galaxies introduces new features that affect
the nature of reionization and the expectations for future probes of
reionization, and may help explain the present properties of dwarf galaxies in
different environments. The predictions can be tested by future numerical
simulations and may be verified by upcoming observations. Current simulations,
limited to relatively small volumes and periodic boundary conditions, largely
omit cosmic scatter and its consequences. In particular, they artificially
produce a sudden end to reionization, and they underestimate the number of
galaxies by up to an order of magnitude at redshift 20.Comment: 8 ApJ pages, 4 figures, ApJ. Minor changes in revised version.
Originally first submitted for publication on Aug. 29, 200
- âŠ