25,463 research outputs found

    The time-evolution of bias

    Get PDF
    We study the evolution of the bias factor b and the mass-galaxy correlation coefficient r in a simple analytic model for galaxy formation and the gravitational growth of clustering. The model shows that b and r can be strongly time-dependent, but tend to approach unity even if galaxy formation never ends as the gravitational growth of clustering debiases the older galaxies. The presence of random fluctuations in the sites of galaxy formation relative to the mass distribution can cause large and rapidly falling bias values at high redshift.Comment: 4 pages, with 2 figures included. Typos corrected to match published ApJL version. Color figure and links at http://www.sns.ias.edu/~max/bias.html or from [email protected]

    Accurate determination of the Lagrangian bias for the dark matter halos

    Get PDF
    We use a new method, the cross power spectrum between the linear density field and the halo number density field, to measure the Lagrangian bias for dark matter halos. The method has several important advantages over the conventional correlation function analysis. By applying this method to a set of high-resolution simulations of 256^3 particles, we have accurately determined the Lagrangian bias, over 4 magnitudes in halo mass, for four scale-free models with the index n=-0.5, -1.0, -1.5 and -2.0 and three typical CDM models. Our result for massive halos with MMM \ge M_* (MM_* is a characteristic non-linear mass) is in very good agreement with the analytical formula of Mo & White for the Lagrangian bias, but the analytical formula significantly underestimates the Lagrangian clustering for the less massive halos $M < M_*. Our simulation result however can be satisfactorily described, with an accuracy better than 15%, by the fitting formula of Jing for Eulerian bias under the assumption that the Lagrangian clustering and the Eulerian clustering are related with a linear mapping. It implies that it is the failure of the Press-Schechter theories for describing the formation of small halos that leads to the inaccuracy of the Mo & White formula for the Eulerian bias. The non-linear mapping between the Lagrangian clustering and the Eulerian clustering, which was speculated as another possible cause for the inaccuracy of the Mo & White formula, must at most have a second-order effect. Our result indicates that the halo formation model adopted by the Press-Schechter theories must be improved.Comment: Minor changes; accepted for publication in ApJ (Letters) ; 11 pages with 2 figures include

    An Analytical Approach to Inhomogeneous Structure Formation

    Full text link
    We develop an analytical formalism that is suitable for studying inhomogeneous structure formation, by studying the joint statistics of dark matter halos forming at two points. Extending the Bond et al. (1991) derivation of the mass function of virialized halos, based on excursion sets, we derive an approximate analytical expression for the ``bivariate'' mass function of halos forming at two redshifts and separated by a fixed comoving Lagrangian distance. Our approach also leads to a self-consistent expression for the nonlinear biasing and correlation function of halos, generalizing a number of previous results including those by Kaiser (1984) and Mo & White (1996). We compare our approximate solutions to exact numerical results within the excursion-set framework and find them to be consistent to within 2% over a wide range of parameters. Our formalism can be used to study various feedback effects during galaxy formation analytically, as well as to simply construct observable quantities dependent on the spatial distribution of objects. A code that implements our method is publicly available at http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added, Figure 2 axis relabele

    The cosmological light-cone effect on the power spectrum of galaxies and quasars in wide-field redshift surveys

    Get PDF
    We examine observational consequences of the cosmological light-cone effect on the power spectrum of the distribution of galaxies and quasars from upcoming redshift surveys. First we derive an expression for the power spectrum of cosmological objects in real space on a light cone, PR,linLC(k)P^{\rm LC}_{\rm R,lin}(k), which is exact in linear theory of density perturbations. Next we incorporate corrections for the nonlinear density evolution and redshift-space distortion in the formula in a phenomenological manner which is consistent with recent numerical simulations. On the basis of this formula, we predict the power spectrum of galaxies and quasars on the light cone for future redshift surveys taking account of the selection function properly. We demonstrate that this formula provides a reliable and useful method to compute the power spectrum on the light cone given an evolution model of bias.Comment: 18 pages, 3 figures, to be published in the Astrophysical Journa

    Scaling properties of the redshift power spectrum: theoretical models

    Get PDF
    We report the results of an analysis of the redshift power spectrum PS(k,μ)P^S(k,\mu) in three typical Cold Dark Matter (CDM) cosmological models, where μ\mu is the cosine of the angle between the wave vector and the line-of-sight. Two distinct biased tracers derived from the primordial density peaks of Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are considered in addition to the pure dark matter models. Based on a large set of high resolution simulations, we have measured the redshift power spectrum for the three tracers from the linear to the nonlinear regime. We investigate the validity of the relation - guessed from linear theory - in the nonlinear regime PS(k,μ)=PR(k)[1+βμ2]2D(k,μ,σ12(k)), P^S(k,\mu)=P^R(k)[1+\beta\mu^2]^2D(k,\mu,\sigma_{12}(k)), where PR(k)P^R(k) is the real space power spectrum, and β\beta equals Ω00.6/bl\Omega_0^{0.6}/b_l. The damping function DD which should generally depend on kk, μ\mu, and σ12(k)\sigma_{12}(k), is found to be a function of only one variable kμσ12(k)k\mu\sigma_{12}(k). This scaling behavior extends into the nonlinear regime, while DD can be accurately expressed as a Lorentz function - well known from linear theory - for values D>0.1D > 0.1. The difference between σ12(k)\sigma_{12}(k) and the pairwise velocity dispersion defined by the 3-D peculiar velocity of the simulations (taking r=1/kr=1/k) is about 15%. Therefore σ12(k)\sigma_{12}(k) is a good indicator of the pairwise velocity dispersion. The exact functional form of DD depends on the cosmological model and on the bias scheme. We have given an accurate fitting formula for the functional form of DD for the models studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include

    Unusually Large Fluctuations in the Statistics of Galaxy Formation at High Redshift

    Full text link
    We show that various milestones of high-redshift galaxy formation, such as the formation of the first stars or the complete reionization of the intergalactic medium, occurred at different times in different regions of the universe. The predicted spread in redshift, caused by large-scale fluctuations in the number density of galaxies, is at least an order of magnitude larger than previous expectations that argued for a sharp end to reionization. This cosmic scatter in the abundance of galaxies introduces new features that affect the nature of reionization and the expectations for future probes of reionization, and may help explain the present properties of dwarf galaxies in different environments. The predictions can be tested by future numerical simulations and may be verified by upcoming observations. Current simulations, limited to relatively small volumes and periodic boundary conditions, largely omit cosmic scatter and its consequences. In particular, they artificially produce a sudden end to reionization, and they underestimate the number of galaxies by up to an order of magnitude at redshift 20.Comment: 8 ApJ pages, 4 figures, ApJ. Minor changes in revised version. Originally first submitted for publication on Aug. 29, 200

    Selective AP-sequence Based Indoor Localization without Site Survey

    Full text link
    In this paper, we propose an indoor localization system employing ordered sequence of access points (APs) based on received signal strength (RSS). Unlike existing indoor localization systems, our approach does not require any time-consuming and laborious site survey phase to characterize the radio signals in the environment. To be precise, we construct the fingerprint map by cutting the layouts of the interested area into regions with only the knowledge of positions of APs. This can be done offline within a second and has a potential for practical use. The localization is then achieved by matching the ordered AP-sequence to the ones in the fingerprint map. Different from traditional fingerprinting that employing all APs information, we use only selected APs to perform localization, due to the fact that, without site survey, the possibility in obtaining the correct AP sequence is lower if it involves more APs. Experimental results show that, the proposed system achieves localization accuracy < 5m with an accumulative density function (CDF) of 50% to 60% depending on the density of APs. Furthermore, we observe that, using all APs for localization might not achieve the best localization accuracy, e.g. in our case, 4 APs out of total 7 APs achieves the best performance. In practice, the number of APs used to perform localization should be a design parameter based on the placement of APs.Comment: VTC2016-Spring, 15-18 May 2016, Nanjing, Chin
    corecore