198 research outputs found
Cervical fibroid: an uncommon presentation
Fibroids arising from cervix are rare tumours accounting for 2% of all fibroids. A cervical leiomyoma is commonly single and is either interstitial or subserous, rarely it becomes submucous and polypoidal. Anterior cervical fibroid may press on urinary bladder and urethra and displace the urethro-vesical junction giving rise to urinary frequency and retention. Management of symptomatic cervical fibroid is hysterectomy or myomectomy and need an expert hand. Here we report a case of huge anterior cervical fibroid of 15x15x7cm with an unusual presentation of menorrhagia of only 2 days and no urinary symptoms. Inspite of the fibroid being huge and impacted, hysterectomy was done successfully without any injury to bladder and ureters.
Evaluation of the CERES-Rice version 3.0 model for the climate conditions of the state of Kerala, India
The CERES-Rice version 3.0 crop growth simulation model was calibrated and evaluated for the agroclimatic conditions of the state of Kerala in India. Genetic coefficients were developed for the rice crop variety Jaya and used for the model evaluation studies. In four experiments using different transplanting dates during the virippu season (June to September) under rainfed conditions (i.e. no irrigation), the flowering date was predicted within an error of four days and date of crop maturity within an error of two days. The model was found to predict the phenological events of the crop fairly well. The grain yield predicted by the model was within an error of 3 for all the transplanting dates, but the straw yield prediction was within an error of 27. The high accuracy of the grain yield prediction showed the ability of the model to simulate the growth of the crop in the agroclimatic conditions of Kerala. It can be concluded from this study that the model can be used for making various strategic and tactical decisions related to agricultural planning in the state
Climate Change Adaptation in Agriculture in India
Indian agriculture has made a significant progress in recent years, but of late it is facing many challenges due to
the adverse effect of climate change. Moreover, the increasing population pressurizes the agricultural sector for
enhanced food production. To face the challenges of food security and climate change, the country needs to
reorient its land use and agriculture with the state-of-the-art technologies and policy initiatives. DST through its research initiatives, has partnered with three institutions viz., Tamil Nadu Agricultural University, Coimbatore; International Crop Research Institute on Semi-Arid Tropics, Hyderabad and Indian Agricultural Research Institute, New Delhi to develop potential techniques and technologies for adaptation in agriculture to increase resilience against climate change in sustaining crop production. The paper briefly presents outcome of these studies
Arrested spinodal decomposition in polymer brush collapsing in poor solvent
We study the Brownian dynamics of flexible and semiflexible polymer chains
densely grafted on a flat substrate, upon rapid quenching of the system when
the quality of solvent becomes poor and chains attempt collapse into a globular
state. The collapse process of such a polymer brush differs from individual
chains, both in its kinetics and its structural morphology. We find that the
resulting collapsed brush does not form a homogeneous dense layer, in spite of
all chain monomers equally attracting each other via a model Lennard-Jones
potential. Instead, a very distinct inhomogeneous density distribution in the
plane forms, with a characteristic length scale dependent on the quenching
depth (or equivalently, the strength of monomer attraction) and the geometric
parameters of the brush. This structure is identical to the
spinodal-decomposition structure, however, due to the grafting constraint we
find no subsequent coarsening: the established random bundling with
characteristic periodicity remains as the apparently equilibrium structure. We
compare this finding with a recent field-theoretical model of bundling in a
semiflexible polymer brush.This work was funded by the Osk. Huttunen Foundation (Finland) and the Cambridge Theory of Condensed Matter Grant from EPSRC. Simulations were performed using the Darwin supercomputer of the University of Cambridge High Performance Computing Service provided by Dell Inc. using Strategic Research Infrastructure funding from the Higher Education Funding Council for England.This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/abs/10.1021/ma501985r
Community health and medical provision: impact on neonates (the CHAMPION trial)
BACKGROUND: The trial aims to evaluate whether neonatal mortality can be reduced through systemic changes to the provision and promotion of healthcare. Neonatal mortality rates in India are high compared to other low income countries, and there is a wide variation of rates across regions. There is evidence that relatively inexpensive interventions may be able to prevent up to 75% of these deaths. One area with a particularly high rate is Mahabubnagar District in Andhra Pradesh, where neonatal mortality is estimated to be in the region of 4-9%. The area suffers from a vicious cycle of both poor supply of and small demand for health care services. The trial will assess whether a package of interventions to facilitate systemic changes to the provision and promotion of healthcare may be able to substantially reduce neonatal mortality in this area and be cost-effective. If successful, the trial is designed so that it should be possible to substantially scale up the project in regions with similarly high neonatal mortality throughout Andhra Pradesh and elsewhere. METHODS/DESIGN: This trial will be a cluster-randomised controlled trial involving 464 villages in Mahabubnagar District. The package of interventions will first be introduced in half of the villages with the others serving as controls. The trial will run for a period of three years. The intervention in the trial has two key elements: a community health promotion campaign and a system to contract out healthcare to non-public institutions. The health promotion campaign will include a health education campaign, participatory discussion groups, training of village health workers and midwives, and improved coordination of antenatal services. The intervention group will also have subsidized access to pregnancy-related healthcare services at non-public lth centres (NPHCs). The primary outcome of the trial will be neonatal mortality. Secondary outcomes will include age at and cause of neonatal death, neonatal morbidity, maternal mortality and morbidity, health service usage, costs and several process and knowledge outcomes. DISCUSSION: The trial will be run by independent research and service delivery arms and supervised by a trial steering committee. A data monitoring committee will be put in place to monitor the trial and recommend stopping/continuation according to a Peto-Haybittle rule. The primary publication for the trial will follow CONSORT guidelines for cluster randomised controlled trials. Criteria for authorship of all papers, presentations and reports resulting from the study will conform to ICMJE standards
Physics of Seismo-electromagnetic Phenomena
The seismo-electromagnetic phenomena (SEMG) are integrated in a relatively recent research field that studies diverse phenomena such as: unusual seismo-electrical signals [1], abnormal ultra-low-frequency (ULF) seismo-electromagnetic emissions [2], very-low-frequency (VLF) and low-frequency (LF) radiobroadcast anomalies associated with ionosphere perturbations [3], variation of total electron content of the ionosphere [4], and atypical infrared emissions [5], all related with the preparatory stage of impending earthquakes. In the past, like many other branches of science like Quantum Mechanics, SEMG have been responsible for intense debates about its credibility, in this case concerning its applicability to short-term earthquake prediction [6]. In fact, the development of a truly pre-quake forecasting system is still an elusive plan, but SEM emissions are now a very well established effect extensively reported in literature. Nevertheless, much of the Physics implicated is still not fully understood.
Thus, our main effort is directed towards a systematic field observation of SEMG effects and the development of both constructive theoretical models and laboratorial experiments to promote a better understanding of the Physics engaged in these phenomena. In this presentation we will present a sum up of our recent achievements [7,8,9], focusing future work and improvements.
[1] A. Konstantaras, et al., On the electric field transient anomaly observed at the time of the Kythira M=6.9 earthquake on January 2006, Nat. Hazards Earth Syst. Sci. 7, 677 (2007).
[2] T. Bleier, et al., Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci. 9, 585 (2009).
[3] P. Biagi, et al., An overview on preseismic anomalies in LF radio signals revealed in Italy by wavelet analysis, Annals of Geophysics 51, 237 (2008).
[4] V. Chauhan, et al., Ultra-low-frequency (ULF) and total electron content (TEC) anomalies observed at Agra and their association with regional earthquakes, Journal of Geodynamics 48, 68 (2009).
[5] D. Ouzounov, et al., Outgoing long wave radiation variability from IR satellite data prior to major earthquakes, Tectonophysics 431, 211 (2007).
[6] S. Uyeda, et al., Short-term earthquake prediction: Current status of seismo-electromagnetics, Tectonophysics 470, 205 (2009).
[7] H.G. Silva, et al., Atmospheric electrical field anomalies associated with seismic activity, Nat. Hazards Earth Syst. Sci. 11, 987 (2011).
[8] H. G. Silva, et al., Electric transport in different granitic rocks, EGU General Assembly 2011 (EGU 2011), 3-8 April 2011, Vienna (Austria).
[9] H.G. Silva, et al., Piezoelectric effect during solid fracture causing electromagnetic emissions, International Conference on Computational Modelling of Fracture and Failure (CFRAC 2011), 6-8 June 2011, Barcelona (Spain)
B7-H1-Deficiency Enhances the Potential of Tolerogenic Dendritic Cells by Activating CD1d-Restricted Type II NKT Cells
Background: Dendritic cells (DC) can act tolerogenic at a semi-mature stage by induction of protective CD4+ T cell and NKT cell responses. Methodology/Principal Findings: Here we studied the role of the co-inhibitory molecule B7-H1 (PD-L1, CD274) on semimature DC that were generated from bone marrow (BM) cells of B7-H12/2 mice and applied to the model of Experimental Autoimmune Encephalomyelitis (EAE). Injections of B7-H1-deficient DC showed increased EAE protection as compared to wild type (WT)-DC. Injections of B7-H12/2 TNF-DC induced higher release of peptide-specific IL-10 and IL-13 after restimulation in vitro together with elevated serum cytokines IL-4 and IL-13 produced by NKT cells, and reduced IL-17 and IFN-c production in the CNS. Experiments in CD1d2/2 and Ja2812/2 mice as well as with type I and II NKT cell lines indicated that only type II NKT cells but not type I NKT cells (invariant NKT cells) could be stimulated by an endogenous CD1d-ligand on DC and were responsible for the increased serum cytokine production in the absence of B7-H1. Conclusions/Significance: Together, our data indicate that BM-DC express an endogenous CD1d ligand and B7-H1 to ihibit type II but not type I NKT cells. In the absence of B7-H1 on these DC their tolerogenic potential to stimulate tolerogenic CD4+ and NKT cell responses is enhanced
- …