124 research outputs found
Self similar Barkhausen noise in magnetic domain wall motion
A model for domain wall motion in ferromagnets is analyzed. Long-range
magnetic dipolar interactions are shown to give rise to self-similar dynamics
when the external magnetic field is increased adiabatically. The power spectrum
of the resultant Barkhausen noise is of the form , where
can be estimated from the critical exponents for interface
depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let
Using force covariance to derive effective stochastic interactions in dissipative particle dynamics
There exist methods for determining effective conservative interactions in
coarse grained particle based mesoscopic simulations. The resulting models can
be used to capture thermal equilibrium behavior, but in the model system we
study do not correctly represent transport properties. In this article we
suggest the use of force covariance to determine the full functional form of
dissipative and stochastic interactions. We show that a combination of the
radial distribution function and a force covariance function can be used to
determine all interactions in dissipative particle dynamics. Furthermore we use
the method to test if the effective interactions in dissipative particle
dynamics (DPD) can be adjusted to produce a force covariance consistent with a
projection of a microscopic Lennard-Jones simulation. The results indicate that
the DPD ansatz may not be consistent with the underlying microscopic dynamics.
We discuss how this result relates to theoretical studies reported in the
literature.Comment: 10 pages, 10 figure
Collective Transport in Arrays of Quantum Dots
(WORDS: QUANTUM DOTS, COLLECTIVE TRANSPORT, PHYSICAL EXAMPLE OF KPZ)
Collective charge transport is studied in one- and two-dimensional arrays of
small normal-metal dots separated by tunnel barriers. At temperatures well
below the charging energy of a dot, disorder leads to a threshold for
conduction which grows linearly with the size of the array. For short-ranged
interactions, one of the correlation length exponents near threshold is found
from a novel argument based on interface growth. The dynamical exponent for the
current above threshold is also predicted analytically, and the requirements
for its experimental observation are described.Comment: 12 pages, 3 postscript files included, REVTEX v2, (also available by
anonymous FTP from external.nj.nec.com, in directory /pub/alan/dotarrays [as
separate files]) [replacement: FIX OF WRONG VERSION, BAD SHAR] March 17,
1993, NEC
Interface Motion in Random Media at Finite Temperature
We have studied numerically the dynamics of a driven elastic interface in a
random medium, focusing on the thermal rounding of the depinning transition and
on the behavior in the pinned phase. Thermal effects are quantitatively
more important than expected from simple dimensional estimates. For sufficient
low temperature the creep velocity at a driving force equal to the
depinning force exhibits a power-law dependence on , in agreement with
earlier theoretical and numerical predictions for CDW's. We have also examined
the dynamics in the pinned phase resulting from slowly increasing the
driving force towards threshold. The distribution of avalanche sizes
decays as , with , in agreement with
recent theoretical predictions.Comment: harvmac.tex, 30 pages, including 9 figures, available upon request.
SU-rm-94073
Depinning transition and thermal fluctuations in the random-field Ising model
We analyze the depinning transition of a driven interface in the 3d
random-field Ising model (RFIM) with quenched disorder by means of Monte Carlo
simulations. The interface initially built into the system is perpendicular to
the [111]-direction of a simple cubic lattice. We introduce an algorithm which
is capable of simulating such an interface independent of the considered
dimension and time scale. This algorithm is applied to the 3d-RFIM to study
both the depinning transition and the influence of thermal fluctuations on this
transition. It turns out that in the RFIM characteristics of the depinning
transition depend crucially on the existence of overhangs. Our analysis yields
critical exponents of the interface velocity, the correlation length, and the
thermal rounding of the transition. We find numerical evidence for a scaling
relation for these exponents and the dimension d of the system.Comment: 6 pages, including 9 figures, submitted for publicatio
Anisotropic Scaling in Threshold Critical Dynamics of Driven Directed Lines
The dynamical critical behavior of a single directed line driven in a random
medium near the depinning threshold is studied both analytically (by
renormalization group) and numerically, in the context of a Flux Line in a
Type-II superconductor with a bulk current . In the absence of
transverse fluctuations, the system reduces to recently studied models of
interface depinning. In most cases, the presence of transverse fluctuations are
found not to influence the critical exponents that describe longitudinal
correlations. For a manifold with internal dimensions,
longitudinal fluctuations in an isotropic medium are described by a roughness
exponent to all orders in , and a
dynamical exponent . Transverse
fluctuations have a distinct and smaller roughness exponent
for an isotropic medium. Furthermore, their
relaxation is much slower, characterized by a dynamical exponent
, where is the
correlation length exponent. The predicted exponents agree well with numerical
results for a flux line in three dimensions. As in the case of interface
depinning models, anisotropy leads to additional universality classes. A
nonzero Hall angle, which has no analogue in the interface models, also affects
the critical behavior.Comment: 26 pages, 8 Postscript figures packed together with RevTeX 3.0
manuscript using uufiles, uses multicol.sty and epsf.sty, e-mail
[email protected] in case of problem
Novel type of phase transition in a system of self-driven particles
A simple model with a novel type of dynamics is introduced in order to
investigate the emergence of self-ordered motion in systems of particles with
biologically motivated interaction. In our model particles are driven with a
constant absolute velocity and at each time step assume the average direction
of motion of the particles in their neighborhood with some random perturbation
() added. We present numerical evidence that this model results in a
kinetic phase transition from no transport (zero average velocity, ) to finite net transport through spontaneous symmetry breaking of the
rotational symmetry. The transition is continuous since is
found to scale as with
Depinning with dynamic stress overshoots: A hybrid of critical and pseudohysteretic behavior
A model of an elastic manifold driven through a random medium by an applied
force F is studied focussing on the effects of inertia and elastic waves, in
particular {\it stress overshoots} in which motion of one segment of the
manifold causes a temporary stress on its neighboring segments in addition to
the static stress. Such stress overshoots decrease the critical force for
depinning and make the depinning transition hysteretic. We find that the steady
state velocity of the moving phase is nevertheless history independent and the
critical behavior as the force is decreased is in the same universality class
as in the absence of stress overshoots: the dissipative limit which has been
studied analytically. To reach this conclusion, finite-size scaling analyses of
a variety of quantities have been supplemented by heuristic arguments.
If the force is increased slowly from zero, the spectrum of avalanche sizes
that occurs appears to be quite different from the dissipative limit. After
stopping from the moving phase, the restarting involves both fractal and
bubble-like nucleation. Hysteresis loops can be understood in terms of a
depletion layer caused by the stress overshoots, but surprisingly, in the limit
of very large samples the hysteresis loops vanish. We argue that, although
there can be striking differences over a wide range of length scales, the
universality class governing this pseudohysteresis is again that of the
dissipative limit. Consequences of this picture for the statistics and dynamics
of earthquakes on geological faults are briefly discussed.Comment: 43 pages, 57 figures (yes, that's a five followed by a seven), revte
Invading interfaces and blocking surfaces in high dimensional disordered systems
We study the high-dimensional properties of an invading front in a disordered
medium with random pinning forces. We concentrate on interfaces described by
bounded slope models belonging to the quenched KPZ universality class. We find
a number of qualitative transitions in the behavior of the invasion process as
dimensionality increases. In low dimensions the system is characterized
by two different roughness exponents, the roughness of individual avalanches
and the overall interface roughness. We use the similarity of the dynamics of
an avalanche with the dynamics of invasion percolation to show that above
avalanches become flat and the invasion is well described as an annealed
process with correlated noise. In fact, for the overall roughness is
the same as the annealed roughness. In very large dimensions, strong
fluctuations begin to dominate the size distribution of avalanches, and this
phenomenon is studied on the Cayley tree, which serves as an infinite
dimensional limit. We present numerical simulations in which we measured the
values of the critical exponents of the depinning transition, both in finite
dimensional lattices with and on the Cayley tree, which support our
qualitative predictions. We find that the critical exponents in are very
close to their values on the Cayley tree, and we conjecture on this basis the
existence of a further dimension, where mean field behavior is obtained.Comment: 12 pages, REVTeX with 2 postscript figure
Collective Particle Flow through Random Media
A simple model for the nonlinear collective transport of interacting
particles in a random medium with strong disorder is introduced and analyzed. A
finite threshold for the driving force divides the behavior into two regimes
characterized by the presence or absence of a steady-state particle current.
Below this threshold, transient motion is found in response to an increase in
the force, while above threshold the flow approaches a steady state with motion
only on a network of channels which is sparse near threshold. Some of the
critical behavior near threshold is analyzed via mean field theory, and
analytic results on the statistics of the moving phase are derived. Many of the
results should apply, at least qualitatively, to the motion of magnetic bubble
arrays and to the driven motion of vortices in thin film superconductors when
the randomness is strong enough to destroy the tendencies to lattice order even
on short length scales. Various history dependent phenomena are also discussed.Comment: 63 preprint pages plus 6 figures. Submitted to Phys Rev
- …