120 research outputs found
Tight Upper Bound Of The Maximum Speed Of Evolution Of A Quantum State
I report a tight upper bound of the maximum speed of evolution from one
quantum state to another with fidelity less than
or equal to an arbitrary but fixed value under the action of a time-independent
Hamiltonian. Since the bound is directly proportional to the average absolute
deviation from the median of the energy of the state , one may
interpret as a meaningful measure of the maximum information
processing capability of a system.Comment: 4 pages, 1 figure, minor changes with an additional reference added,
to appear in PR
The ideal energy of classical lattice dynamics
We define, as local quantities, the least energy and momentum allowed by
quantum mechanics and special relativity for physical realizations of some
classical lattice dynamics. These definitions depend on local rates of
finite-state change. In two example dynamics, we see that these rates evolve
like classical mechanical energy and momentum.Comment: 12 pages, 4 figures, includes revised portion of arXiv:0805.335
Efficient Toffoli Gates Using Qudits
The simplest decomposition of a Toffoli gate acting on three qubits requires
{\em five} 2-qubit gates. If we restrict ourselves to controlled-sign (or
controlled-NOT) gates this number climbs to six. We show that the number of
controlled-sign gates required to implement a Toffoli gate can be reduced to
just {\em three} if one of the three quantum systems has a third state that is
accessible during the computation, i.e. is actually a qutrit. Such a
requirement is not unreasonable or even atypical since we often artificially
enforce a qubit structure on multilevel quantums systems (eg. atoms, photonic
polarization and spatial modes). We explore the implementation of these
techniques in optical quantum processing and show that linear optical circuits
could operate with much higher probabilities of success
Discrimination between evolution operators
Under broad conditions, evolutions due to two different Hamiltonians are
shown to lead at some moment to orthogonal states. For two spin-1/2 systems
subject to precession by different magnetic fields the achievement of
orthogonalization is demonstrated for every scenario but a special one. This
discrimination between evolutions is experimentally much simpler than
procedures proposed earlier based on either sequential or parallel application
of the unknown unitaries. A lower bound for the orthogonalization time is
proposed in terms of the properties of the two Hamiltonians.Comment: 7 pages, 2 figures, REVTe
Spacetime Foam, Holographic Principle, and Black Hole Quantum Computers
Spacetime foam, also known as quantum foam, has its origin in quantum
fluctuations of spacetime. Arguably it is the source of the holographic
principle, which severely limits how densely information can be packed in
space. Its physics is also intimately linked to that of black holes and
computation. In particular, the same underlying physics is shown to govern the
computational power of black hole quantum computers.Comment: 8 pages, LaTeX; Talk given by Jack Ng, in celebration of Paul
Frampton's 60th birthday, at the Coral Gables Conference (in Fort Lauderdale,
Florida on December 17, 2003). To appear in the Proceedings of the 2003 Coral
Gables Conferenc
Simulating Three-Dimensional Hydrodynamics on a Cellular-Automata Machine
We demonstrate how three-dimensional fluid flow simulations can be carried
out on the Cellular Automata Machine 8 (CAM-8), a special-purpose computer for
cellular-automata computations. The principal algorithmic innovation is the use
of a lattice-gas model with a 16-bit collision operator that is specially
adapted to the machine architecture. It is shown how the collision rules can be
optimized to obtain a low viscosity of the fluid. Predictions of the viscosity
based on a Boltzmann approximation agree well with measurements of the
viscosity made on CAM-8. Several test simulations of flows in simple geometries
-- channels, pipes, and a cubic array of spheres -- are carried out.
Measurements of average flux in these geometries compare well with theoretical
predictions.Comment: 19 pages, REVTeX and epsf macros require
Computing Naturally in the Billiard Ball Model
Fredkin's Billiard Ball Model (BBM) is considered one of the fundamental
models of collision-based computing, and it is essentially based on elastic
collisions of mobile billiard balls. Moreover, fixed mirrors or reflectors are
brought into the model to deflect balls to complete the computation. However,
the use of fixed mirrors is "physically unrealistic" and makes the BBM not
perfectly momentum conserving from a physical point of view, and it imposes an
external architecture onto the computing substrate which is not consistent with
the concept of "architectureless" in collision-based computing. In our initial
attempt to reduce mirrors in the BBM, we present a class of gates: the
m-counting gate, and show that certain circuits can be realized with few
mirrors using this gate. We envisage that our findings can be useful in future
research of collision-based computing in novel chemical and optical computing
substrates.Comment: 10 pages, 7 figure
Computational capacity of the universe
Merely by existing, all physical systems register information. And by
evolving dynamically in time, they transform and process that information. The
laws of physics determine the amount of information that a physical system can
register (number of bits) and the number of elementary logic operations that a
system can perform (number of ops). The universe is a physical system. This
paper quantifies the amount of information that the universe can register and
the number of elementary operations that it can have performed over its
history. The universe can have performed no more than ops on
bits.Comment: 17 pages, TeX. submitted to Natur
A Computation in a Cellular Automaton Collider Rule 110
A cellular automaton collider is a finite state machine build of rings of
one-dimensional cellular automata. We show how a computation can be performed
on the collider by exploiting interactions between gliders (particles,
localisations). The constructions proposed are based on universality of
elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and
computing on rings.Comment: 39 pages, 32 figures, 3 table
- …