34 research outputs found
FUS-DDIT3 Prevents the Development of Adipocytic Precursors in Liposarcoma by Repressing PPARγ and C/EBPα and Activating eIF4E
FUS-DDIT3 is a chimeric protein generated by the most common chromosomal translocation t(12;16)(q13;p11) linked to liposarcomas, which are characterized by the accumulation of early adipocytic precursors. Current studies indicate that FUS-DDIT3- liposarcoma develops from uncommitted progenitors. However, the precise mechanism whereby FUS-DDIT3 contributes to the differentiation arrest remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we have characterized the adipocyte regulatory protein network in liposarcomas of FUS-DITT3 transgenic mice and showed that PPARgamma2 and C/EBPalpha expression was altered. Consistent with in vivo data, FUS-DDIT3 MEFs and human liposarcoma cell lines showed a similar downregulation of both PPARgamma2 and C/EBPalpha expression. Complementation studies with PPARgamma but not C/EBPalpha rescued the differentiation block in committed adipocytic precursors expressing FUS-DDIT3. Our results further show that FUS-DDIT3 interferes with the control of initiation of translation by upregulation of the eukaryotic translation initiation factors eIF2 and eIF4E both in FUS-DDIT3 mice and human liposarcomas cell lines, explaining the shift towards the truncated p30 isoform of C/EBPalpha in liposarcomas. Suppression of the FUS-DDIT3 transgene did rescue this adipocyte differentiation block. Moreover, eIF4E was also strongly upregulated in normal adipose tissue of FUS-DDIT3 transgenic mice, suggesting that overexpression of eIF4E may be a primary event in the initiation of liposarcomas. Reporter assays showed FUS-DDIT3 is involved in the upregulation of eIF4E in liposarcomas and that both domains of the fusion protein are required for affecting eIF4E expression. CONCLUSIONS/SIGNIFICANCE: Taken together, this study provides evidence of the molecular mechanisms involve in the disruption of normal adipocyte differentiation program in liposarcoma harbouring the chimeric gene FUS-DDIT3.Research in ISG group is supported partially by FEDER and by MEC (SAF2006-03726), Junta de Castilla y León (CSI03A05), FIS (PI050087, PI050116), Fundación de Investigación MMA, Federación de Cajas de Ahorro Castilla y León (I Convocatoria de Ayudas para Proyectos de Investigación Biosanitaria con Células Madre), CDTEAM project (CENIT-Ingenio 2010) and MEC Consolider-Ingenio 2010 (Ref. CSD2007-0017).Research in ISG group is supported partially by FEDER and by MEC (SAF2006-03726 and PETRI N° 95-0913.OP), Junta de Castilla y León (CSI03A05), FIS (PI050087, PI050116), Fundación de Investigación MMA, Federación de Cajas de Ahorro Castilla y León (I Convocatoria de Ayudas para Proyectos de Investigación Biosanitaria con Células Madre), CDTEAM project (CENIT-Ingenio 2010) and MEC Consolider-Ingenio 2010 (Ref. CSD2007-0017). MSM is supported by the Ramon y Cajal Scientific Spanish Program, Fondo Investigacion Sanitaria (FIS PI04-1271), Junta de Castilla y León (SA085A06) and Fundación Manuel Solorzano, University of Salamanca.Peer reviewe
gh/igf axis gene expression profile in developing atlantic bluefin tuna (Thunnus thynnus).
Atlantic bluefin tuna (ABFT), Thunnus thynnus (Linnaeus, 1758), is a large migratory oceanic top predator, considered as an important worldwide fishery source and a key species in pelagic ecosystems. Survival during the early life stages is crucial for future recruitment success, with larval growth being a determining process. Fish growth and development are mainly controlled by the GH/IGF axis, being involved in skeletal and soft tissue growth, as well as in immune function, appetite control, behavior (including foraging, aggression, and predator avoidance). To characterize the ontogenetic development profile of the GH/IGF axis at the level of gene expression, an ABFT larval rearing experiment (under controlled feeding conditions) was performed in the aquaculture facilities of the Spanish Institute of Oceanography (IEO), in Mazarrón during June 2019. Eggs and larvae from 3 replicates were collected regularly every 2-3 days from 0 until 30 days post-hatching (dph). In a total of 14 sampling points (n = 6-12 larvae) along the ontogeny, growth hormone (gh) and two forms of insulin growth factor (igf1 and igf2) were analyzed by real-time RT-PCR. A sigmoidal gh expression profile was observed, with higher values at 5 and 23 (maximum) dph, and lower values at 0 (minimum), 12 and 30 dph. Nevertheless, igf1 and igf2 showed a gradual increase from early days, also with lower values at 0 and 12 dph, but with maximum levels at 30 dph. Results are discussed considering growing rates and transition from larvae to juvenile, underlining the importance of gh/ igf axis during the ABFT early development and growth
GH/IGF AXIS GENE EXPRESSION PROFILE IN DEVELOPING ATLANTIC BLUEFIN TUNA (Thunnus thynnus)
Atlantic bluefin tuna (ABFT), Thunnus thynnus (Linnaeus, 1758), is a large migratory oceanic top predator, considered as an important worldwide fishery source and a key species in pelagic ecosystems. Survival during the early life stages is crucial for future recruitment success, with larval growth being a determining process. Fish growth and development are mainly controlled by the GH/IGF axis, being involved in skeletal and soft tissue growth, as well as in immune function, appetite control, behavior (including foraging, aggression, and predator avoidance). To characterize the ontogenetic development profile of the GH/IGF axis at the level of gene expression, an ABFT larval rearing experiment (under controlled feeding conditions) was performed in the aquaculture facilities of the Spanish Institute of Oceanography (IEO), in Mazarrón during June 2019. Eggs and larvae from 3 replicates were collected regularly every 2-3 days from 0 until 30 days post-hatching (dph). In a total of 14 sampling points (n = 6-12 larvae) along the ontogeny, growth hormone (gh) and two forms of insulin growth factor (igf1 and igf2) were analyzed by real-time RT-PCR. A sigmoidal gh expression profile was observed, with higher values at 5 and 23 (maximum) dph, and lower values at 0 (minimum), 12 and 30 dph. Nevertheless, igf1 and igf2 showed a gradual increase from early days, also with lower values at 0 and 12 dph, but with maximum levels at 30 dph. Results are discussed considering growing rates and transition from larvae to juvenile, underlining the importance of gh/ igf axis during the ABFT early development and growth
Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)
Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in response to DNA damage. Although examination of the response showed that overall expression of p53 target gene expression patterns was similarly altered in both control and Snai2-deficient cells, we have identified and validated candidate Snai2 target genes linked to Snai2 gene function in response to DNA damage. This work defines for the first time the effect of Snai2 on p53 target genes in cells undergoing growth arrest, elucidates the Snai2-dependent molecular network induced by DNA damage, points to novel putative Snai2 targets, and suggest a mechanistic model, which has implications for cancer management
Contamination level and spatial distribution of heavy metals in water and sediments of El Guájaro Reservoir, Colombia
Heavy metals have become a subject of special concern worldwide, mainly due to high persistence in the environment, toxicity, biogeochemical recycling and ecological risk. Therefore, the objective of this investigation was to analyze the spatial–temporal distribution of heavy metals in water and sediments to determine the environmental status of El Guájaro Reservoir, where such studies have not been developed. Two measurement campaigns (dry and wet period) were carried out and eight sampling stations were selected. A comparison of water and sediment quality parameters with existing national and international regulations was done. Also, heavy metal distribution maps were generated, and the geoaccumulation index was calculated to identify sources and sediments contamination level. Based on the obtained results, agriculture and mining activities are the main causes of the reservoir contamination. This metals levels could be a potential risk for the aquatic life and the populations that are supplied from this water body
Diazoxide attenuates autoimmune encephalomyelitis and modulates lymphocyte proliferation and dendritic cell functionality
Activation of mitochondrial ATP-sensitive potassium (KATP) channels is postulated as an effective mechanism to confer cardio and neuroprotection, especially in situations associated to oxidative stress. Pharmacological activation of these channels inhibits glia-mediated neuroinflammation. In this way, diazoxide, an old-known mitochondrial KATP channel opener, has been proposed as an effective and safe treatment for different neurodegenerative diseases, demonstrating efficacy in different animal models, including the experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple Sclerosis. Although neuroprotection and modulation of glial reactivity could alone explain the positive effects of diazoxide administration in EAE mice, little is known of its effects on the immune system and the autoimmune reaction that triggers the EAE pathology. The aim of the present work was to study the effects of diazoxide in autoimmune key processes related with EAE, such as antigen presentation and lymphocyte activation and proliferation. Results show that, although diazoxide treatment inhibited in vitro and ex-vivo lymphocyte proliferation from whole splenocytes it had no effect in isolated CD4(+) T cells. In any case, treatment had no impact in lymphocyte activation. Diazoxide can also slightly decrease CD83, CD80, CD86 and major histocompatibility complex class II expression in cultured dendritic cells, demonstrating a possible role in modulating antigen presentation. Taken together, our results indicate that diazoxide treatment attenuates autoimmune encephalomyelitis pathology without immunosuppressive effect
SARS-CoV-2 viral load in nasopharyngeal swabs is not an independent predictor of unfavorable outcome
The aim was to assess the ability of nasopharyngeal SARS-CoV-2 viral load at first patient’s hospital evaluation to predict unfavorable outcomes. We conducted a prospective cohort study including 321 adult patients with confirmed COVID-19 through RT-PCR in nasopharyngeal swabs. Quantitative Synthetic SARS-CoV-2 RNA cycle threshold values were used to calculate the viral load in log10 copies/mL. Disease severity at the end of follow up was categorized into mild, moderate, and severe. Primary endpoint was a composite of intensive care unit (ICU) admission and/or death (n = 85, 26.4%). Univariable and multivariable logistic regression analyses were performed. Nasopharyngeal SARS-CoV-2 viral load over the second quartile (≥ 7.35 log10 copies/mL, p = 0.003) and second tertile (≥ 8.27 log10 copies/mL, p = 0.01) were associated to unfavorable outcome in the unadjusted logistic regression analysis. However, in the final multivariable analysis, viral load was not independently associated with an unfavorable outcome. Five predictors were independently associated with increased odds of ICU admission and/or death: age ≥ 70 years, SpO2, neutrophils > 7.5 × 103/µL, lactate dehydrogenase ≥ 300 U/L, and C-reactive protein ≥ 100 mg/L. In summary, nasopharyngeal SARS-CoV-2 viral load on admission is generally high in patients with COVID-19, regardless of illness severity, but it cannot be used as an independent predictor of unfavorable clinical outcome
Environmental determinants and spatial mismatch of mammal diversity measures in Colombia
Including complementary diversity measures into ecological and conservation studies should improve our ability to link species assemblages to ecosystems. Recent measures such as phylogenetic and functional diversity have furthered our understanding of assemblage patterns of ecosystems and species, allowing improved inference of ecosystem function and conservation. We evaluated spatial patterns of taxonomic, phylogenetic and functional diversity of mammals in Colombia and identified their main environmental determinants, as well as interrelationships and spatial mismatch between the three measures. We found significant effects of elevation and precipitation on species richness, slope and species richness on phylogenetic diversity, and slope and phylogenetic diversity on functional diversity. We also identified a spatial mismatch of the three measures in some areas of the country: 12% of the country for species richness and 14% for phylogenetic and functional diversity. Our results highlight the importance of including species relationships within environmental drivers with biogeographical and distribution analyses and could facilitate selection of priority areas for conservation, especially when mismatch occurs between measures
Chronic inflammatory demyelinating polyneuropathy as an autoimmune disease
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease characterized by neurological symptoms and signs of progressive weakness, paresthesias, and sensory dysfunction. Other symptoms include reduced or absent tendon reflexes, cranial nerve involvement, autonomic symptoms, ataxia, and neuropathic pain. Unlike other autoimmune diseases, CIDP generally affects older individuals and has a male predominance. The onset is generally insidious and can take up to 8 weeks with a relapsing-recovery pattern. Like all autoimmune diseases, the etiology is multifactorial, with both genetic and environmental factors contributing to it. Case reports of CIDP have found associations with multiple pathogenic organisms including Hepatitis B and C viruses, Bartonella henselae, Mycoplasma pneumoniae, Human immunodeficiency virus, Cytomegalovirus and Epstein-Barr virus. Possible antigenic self-targets include myelin protein 0, myelin protein 2, peripheral myelin protein 22, Connexin 32, and myelin basic protein. Antibodies targeting the Ranvier node proteins such as contactin-1, contactin-associated protein 1, and neurofascin 155 have been described. CIDP is treated with rehabilitation and pharmacological modalities. Pharmacological treatments target autoimmune dysfunction and include corticosteroids, intravenous immunoglobulin, subcutaneous immunoglobulin, plasma exchange, immunosuppressive and immunomodulatory agents such as methotrexate, cyclophosphamide, rituximab, and mycophenolate mofetil. Although there are few observational studies and randomized clinical trials with limited evidence supporting the use of immunosuppressive drugs, they are widely used in clinical practice. A comprehensive review of CIDP is presented herein in light of the autoimmune tautology. © 2019 Elsevier Lt
Chronic inflammatory demyelinating polyneuropathy as an autoimmune disease
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease characterized by neurological symptoms and signs of progressive weakness, paresthesias, and sensory dysfunction. Other symptoms include reduced or absent tendon reflexes, cranial nerve involvement, autonomic symptoms, ataxia, and neuropathic pain. Unlike other autoimmune diseases, CIDP generally affects older individuals and has a male predominance. The onset is generally insidious and can take up to 8 weeks with a relapsing-recovery pattern. Like all autoimmune diseases, the etiology is multifactorial, with both genetic and environmental factors contributing to it. Case reports of CIDP have found associations with multiple pathogenic organisms including Hepatitis B and C viruses, Bartonella henselae, Mycoplasma pneumoniae, Human immunodeficiency virus, Cytomegalovirus and Epstein-Barr virus. Possible antigenic self-targets include myelin protein 0, myelin protein 2, peripheral myelin protein 22, Connexin 32, and myelin basic protein. Antibodies targeting the Ranvier node proteins such as contactin-1, contactin-associated protein 1, and neurofascin 155 have been described. CIDP is treated with rehabilitation and pharmacological modalities. Pharmacological treatments target autoimmune dysfunction and include corticosteroids, intravenous immunoglobulin, subcutaneous immunoglobulin, plasma exchange, immunosuppressive and immunomodulatory agents such as methotrexate, cyclophosphamide, rituximab, and mycophenolate mofetil. Although there are few observational studies and randomized clinical trials with limited evidence supporting the use of immunosuppressive drugs, they are widely used in clinical practice. A comprehensive review of CIDP is presented herein in light of the autoimmune tautology. © 2019 Elsevier Lt