2,770 research outputs found
Excited-state contribution to the axial-vector and pseudo-scalar correlators with two extra pions
We study multi-particle state contributions to the QCD two-point functions of
the axial-vector and pseudo-scalar quark bilinears in a finite spatial volume.
For sufficiently small quark masses one expects three-meson states with two
additional pions at rest to have the lowest total energy after the ground
state. We calculate this three-meson state contribution using chiral
perturbation theory. We find it to be strongly suppressed and too small to be
seen in present-day lattice simulations.Comment: 17 pages, 5 figure
Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters
It is usually believed that there are no perturbative anomalies in
supersymmetric gauge theories beyond the well-known chiral anomaly. In this
paper we revisit this issue, because previously given arguments are incomplete.
Specifically, we rule out the existence of soft anomalies, i.e., quantum
violations of supersymmetric Ward identities proportional to a mass parameter
in a classically supersymmetric theory. We do this by combining a previously
proven theorem on the absence of hard anomalies with a spurion analysis, using
the methods of Algebraic Renormalization. We work in the on-shell component
formalism throughout. In order to deal with the nonlinearity of on-shell
supersymmetry transformations, we take the spurions to be dynamical, and show
how they nevertheless can be decoupled.Comment: Final version, typoes fixed. Revtex, 48 page
The molluscan fisheries of Germany
The German molluscan fishery has always concentrated on the North Sea. Mollusks occur in the Baltic Sea, but are not as marketable. In prehistory and the Middle Ages, coastal inhabitants gathered mussels, Mytilus edulis, cockles, Cerastoderma edule, and flat oysters, Ostrea edulis, for food and also used mussels as agricultural fertilizer. An organized oyster fishery developed in the 16th century and had considerable economic importance for 300 years. Oysters were dredged with sailing vessels near the coast, as well as far offshore. Catches peaked in the second half of the l 9th century at 3-5 million oysters per year. They declined dramatically in the following decades due to permanent recruitment failures, and the flat oyster finally disappeared from the German coast in the l 950's. An organized fishery for freshwater pearl mussels, Margaritifera margaritifera, also developed at the end of the Middle Ages, but mismanagement and environmental degradation since the late 19th century have brought this species to the brink of extinction as well. Other mollusks harvested on a smaller scale in the past have been softshell clams, Mya arenaria, and whelks, Buccinum undatum. The modern mussel fishery for human food began in 1929 with the introduction of novel dredging methods. Annual catches were in the order of a few thousand tons during the first half of this century and have attained 20,000-60,000 tons since the early l980's; concomitantly, prices have increased five-fold in recent decades. The fishery is now based on 14 highly specialized vessels harvesting from 3,800 ha (9,500 acres) of culture plots which are seeded with mussels from natural beds. Pacific oysters, Crassostrea gigas, were first introduced in the l970's, and a natural population has recently begun to establish itself. They are cultured by one company which imports half-grown seed from the British Isles. A nearshore hydraulic dredge fishery for cockles began in 1973, but was banned for political reasons in 1992. It was replaced by a new offshore fishery for hard clams, Spisula solida, which ended when the clam stock suffered total mortality in the 1995-96 ice winter. The molluscan fisheries and aquaculture sector (production and processing) in 1995 employed almost 100 people year-round and another 50-100 seasonally. The annual product is about US$35 million
Wind and boundary layers in Rayleigh-Benard convection. Part 2: boundary layer character and scaling
The effect of the wind of Rayleigh-Benard convection on the boundary layers
is studied by direct numerical simulation of an L/H=4 aspect-ratio domain with
periodic side boundary conditions for Ra={10^5, 10^6, 10^7} and Pr=1. It is
shown that the kinetic boundary layers on the top- and bottom plate have some
features of both laminar and turbulent boundary layers. A continuous spectrum,
as well as significant forcing due to Reynolds stresses indicates undoubtedly a
turbulent character, whereas the classical integral boundary layer parameters
-- the shape factor and friction factor (the latter is shown to be dominated by
the pressure gradient) -- scale with Reynolds number more akin to laminar
boundary layers. This apparent dual behavior is caused by the large influence
of plumes impinging onto and detaching from the boundary layer. The
plume-generated Reynolds stresses have a negligible effect on the friction
factor at the Rayleigh numbers we consider, which indicates that they are
passive with respect to momentum transfer in the wall-parallel direction.
However, the effect of Reynolds stresses cannot be neglected for the thickness
of the kinetic boundary layer. Using a conceptual wind model, we find that the
friction factor C_f should scale proportional to the thermal boundary layer
thickness as C_f ~ lambda_Theta, while the kinetic boundary layer thickness
lambda_u scales inversely proportional to the thermal boundary layer thickness
and wind Reynolds number lambda_u ~ lambda_Theta^{-1} Re^{-1}. The predicted
trends for C_f and \lambda_u are in agreement with DNS results
Modeling the hydrogeochemical evolution of brine in saline systems: case study of the Sabkha of Oum El Khialate in South East Tunisia
We studied the effects of evaporation and groundwater flow on the formation of salt minerals in the Sabkha of Oum El Khialate in South East Tunisia, which contains large amounts of sulfate sodium mineral deposits. Due to the fact that there are no important surface water bodies present in this sabkha, transport of solutes is dominated by advection rather than mixing in lakes. For our study we used both analytical conservative and numerical reactive transport models. Results showed that salinity varies with distance and may reach very high levels near a watershed where the groundwater flux is zero. As a consequence, reactive transport simulations results showed that more minerals precipitate and water activity decreases values near this watershed. Model results also showed that a sequence of precipitating minerals could be deduced after 140,000 years. From the boundary of the sabkha towards the watershed the mineral sequence was dolomite, gypsum, magnesite, bloedite, halite and mirabilite. It was found that the amounts as well as the mineral precipitation distribution strongly depend on salinity and rates of inflowing water. (C) 2014 Elsevier Ltd. All rights reserved.Peer ReviewedPostprint (author’s final draft
Matching Morphology and Diet in the Disc-Winged Bat Thyroptera tricolor (Chiroptera)
The dietary niche and morphological adaptations of a species should be highly correlated. However, conflicting selective pressures may make predictions about diet difficult without additional knowledge of a species' life history. We tested the reliability of predicting a bat's diet from its wing morphology using data for Spix's disk-winged bat (Thyroptera tricolor). The species had been predicted to fall within either the aerial hawking or gleaning foraging group. We compared the results of a theoretical (canonical discriminant function analysis of morphology) and an applied (analysis of droppings) method of diet determination. Our results place T. tricolor in the gleaning functional group with a 77% probability according to morphology. Correspondingly, a large proportion of the diverse diet consisted of nonflying prey, such as spiders, insect larvae, and other silent prey, which should be difficult to detect using echolocation. Although some flying prey were taken, it is clear that T. tricolor regularly gleans prey from surfaces, indicating that for this species, morphology is a useful indicator of diet. However, the breadth of the diet; the high proportion of jumping spiders, leafhoppers, and insect larvae; and the extremely small size of prey were unique features of the diet that could not be predicted from morphology alone. Thus, although comparative statistical methods and the analysis of wing morphology may be helpful to predict the general ecological niche, only detailed investigation of the life history may yield the detail needed for understanding the link between morphology and ecology of individual specie
Lactate-Protected Hypoglycemia (LPH)
Here, we provide an overview of the concept of a lactate-protected hypoglycemia ("LPH"), originally proposed as lowering glucose while simultaneously increasing lactate concentration as a method by which tumors might be targeted. Central to this hypothesis is that lactate can act as a critical salvage fuel for the central nervous system, allowing for wide perturbations in whole body and central nervous system glucose concentrations. Further, many tumors exhibit "the Warburg" effect, consuming glucose and producing and exporting lactate despite adequate oxygenation. While some recent data have provided evidence for a "reverse-Warburg," where some tumors may preferentially consume lactate, many of these experimental methods rely on a significant elevation in lactate in the tumor microenvironment. To date it remains unclear how various tumors behavein vivo, and how they might respond to perturbations in lactate and glucose concentrations or transport inhibition. By exploiting and targeting lactate transport and metabolism in tumors (with a combination of changes in lactate and glucose concentrations, transport inhibitors, etc.), we can begin developing novel methods for targeting otherwise difficult to treat pathologies in the brain and spinal cord. Here we discuss evidence both experimental and observational, and provide direction for next steps in developing therapies based on these concepts
- …