24,484 research outputs found
How red is a quantum black hole?
Radiating black holes pose a number of puzzles for semiclassical and quantum
gravity. These include the transplanckian problem -- the nearly infinite
energies of Hawking particles created near the horizon, and the final state of
evaporation. A definitive resolution of these questions likely requires robust
inputs from quantum gravity. We argue that one such input is a quantum bound on
curvature. We show how this leads to an upper limit on the redshift of a
Hawking emitted particle, to a maximum temperature for a black hole, and to the
prediction of a Planck scale remnant.Comment: 3 pages, essay for the Gravity Research Foundatio
Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions
Model studies typically estimate intercontinental influence on surface ozone by perturbing emissions from a source continent and diagnosing the ozone response in the receptor continent. Since the response to perturbations is non-linear due to chemistry, conclusions drawn from different studies may depend on the magnitude of the applied perturbation. We investigate this issue for intercontinental transport between North America, Europe, and Asia with sensitivity simulations in three global chemical transport models. In each region, we decrease anthropogenic emissions of NOx and nonmethane volatile organic compounds (NMVOCs) by 20% and 100%. We find strong nonlinearity in the response to NOx perturbations outside summer, reflecting transitions in the chemical regime for ozone production. In contrast, we find no significant nonlinearity to NOx perturbations in summer or to NMVOC perturbations year-round. The relative benefit of decreasing NOx vs. NMVOC from current levels to abate intercontinental pollution increases with the magnitude of emission reductions
An improved sum-product estimate for general finite fields
This paper improves on a sum-product estimate obtained by Katz and Shen for
subsets of a finite field whose order is not prime
'It's a Form of Freedom': The experiences of people with disabilities within equestrian sport
This paper explores the embodied, gendered experiences of disabled horseâriders. Drawing on data from five inâdepth interviews with paradressage riders, the ways in which their involvement in elite disability sport impacts upon their sense of identity and confidence are explored, as well as the considerable health and social benefits that this involvement brings. Social models of disability are employed and the shortcomings of such models, when applied to disability sport, are highlighted. The data presented here demonstrates the necessity of seeing disability sport as an embodied experience and acknowledging the importance of impairment to the experiences of disabled athletes. Living within an impaired body is also a gendered experience and the implications of this when applied to elite disability sport are considered
Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations
We have carried out an extensive survey of magnetic field strengths toward
dark cloud cores in order to test models of star formation: ambipolar-diffusion
driven or turbulence driven. The survey involved hours of observing
with the Arecibo telescope in order to make sensitive OH Zeeman observations
toward 34 dark cloud cores. Nine new probable detections were achieved at the
2.5-sigma level; the certainty of the detections varies from solid to marginal,
so we discuss each probable detection separately. However, our analysis
includes all the measurements and does not depend on whether each position has
a detection or just a sensitive measurement. Rather, the analysis establishes
mean (or median) values over the set of observed cores for relevant
astrophysical quantities. The results are that the mass-to-flux ratio is
supercritical by , and that the ratio of turbulent to magnetic energies
is also . These results are compatible with both models of star
formation. However, these OH Zeeman observations do establish for the first
time on a statistically sound basis the energetic importance of magnetic fields
in dark cloud cores at densities of order cm, and they lay
the foundation for further observations that could provide a more definitive
test.Comment: 22 pages, 2 figures, 2 table
Flat slice Hamiltonian formalism for dynamical black holes
We give a Hamiltonian analysis of the asymptotically flat spherically
symmetric system of gravity coupled to a scalar field. This 1+1 dimensional
field theory may be viewed as the "standard model" for studying black hole
physics. Our analysis is adapted to the flat slice Painleve-Gullstrand
coordinates. We give a Hamiltonian action principle for this system, which
yields an asymptotic mass formula. We then perform a time gauge fixing that
gives a Hamiltonian as the integral of a local density. The Hamiltonian takes a
relatively simple form compared to earlier work in Schwarzschild gauge, and
therefore provides a setting amenable to full quantisation.Comment: 11 pages, refererences added, discussions clarified, version to
appear in PR
Semiclassical states for quantum cosmology
In a metric variable based Hamiltonian quantization, we give a prescription
for constructing semiclassical matter-geometry states for homogeneous and
isotropic cosmological models. These "collective" states arise as infinite
linear combinations of fundamental excitations in an unconventional "polymer"
quantization. They satisfy a number of properties characteristic of
semiclassicality, such as peaking on classical phase space configurations. We
describe how these states can be used to determine quantum corrections to the
classical evolution equations, and to compute the initial state of the universe
by a backward time evolution.Comment: 13 page
- âŠ