2,278 research outputs found

    Адаптивная ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π°Ρ систСма динамичСского ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° фактичСской обводнСнности Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² тСхнологичСских процСссах авиатопливообСспСчСния

    Get PDF
    Modern domestic and international standards, regulators of the aviation fuel industry, considering the negative impact ofΒ the presence of mechanical impurities and water in aviation fuel on the performance and life cycle of aircraft engines, fuel metering equipment, fuel systems of aircraft (A/C), as a threat factor for flight safety, impose high requirements for the purity of aviation fuel while operating aeronautical equipment. At the same time, the causes and sources of water content in jet fuel are a source of economic losses, the most important criterion for the success of the Aerodrome Fueling Complex business. The article considers the task of developing reliable and automated methods as well as technologies for controlling these contaminants, for example for determining water content in aviation fuel when refueling aircraft, and the necessity to minimize an effect of a human factor. The automation of aviation fuel quality monitoring processes, the transition from discrete control methods to continuous ones, from static control methods to dynamic ones (in-line), from indirect methods to direct ones are becoming relevant. The possibilities of end-to-end accounting and analysis of aviation fuel purity parameters at all stages of the aviation fuel life cycle are shown. The article considers the methods and conducts the analysis of known techniques and devices used to determine, measure and indicate actual water content, presence of dissolved, free and total water in jet fuel. The technical solution of continuous automated control of the actual water content level of the jet fuel flow in the processes of aviation fuel supply and aircraft refueling in an information system that provides on-line monitoring and dynamic measurement of the quantitative content of dissolved and free water in the jet fuel flow, is presented. The technical solution for the continuous determination of the quantitative water content in the jet fuel stream is proposed. At the same time, the solution of the problem of monitoring water content in jet fuel is combined with the technological process to control the purification of jet fuel from water. The paper represents an adaptive information management system for continuous monitoring of the water content level of the jet fuel flow, which will allow specialist to substantially increase a level of automatization of aircraft aviation fuel supply technological processes, decrease a negative impact of a human factor, increase economic effectiveness of the aviation fuel supply complex. The system is designed to carry out continuous, automated control (monitoring) of water content in the jet fuel flow at all the stages of the jet fuel movement: receiving, storing and delivering jet fuel and refueling aircraft, in particular fuel and lubricants warehouses (fuel and lubricants), refueling complexes and pre-apron filling points. It can also be used in the fuel system of the aircraft, as a system to prevent water content in the jet fuel. The integration of automation tools will enable us to improve the quality of management of aviation fuel supply and aircraft refueling to ensure timely operational decision based on real data in real time mode, provided the proposed system integration into the airport system for operational data exchange.Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ отСчСствСнныС ΠΈ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹Π΅ трСбования рСгуляторов отрасли авиатопливообСспСчСния, принимая Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ влияниС присутствия мСханичСских примСсСй ΠΈ Π²ΠΎΠ΄Ρ‹ Π² Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π΅ Π½Π° Ρ€Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΈ рСсурс Π°Π²ΠΈΠ°Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ, Ρ‚ΠΎΠΏΠ»ΠΈΠ²ΠΎΡ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½Ρ‹Ρ… систСм Π²ΠΎΠ·Π΄ΡƒΡˆΠ½Ρ‹Ρ… судов (Π’Π‘) ΠΊΠ°ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΡƒΠ³Ρ€ΠΎΠ·Ρ‹ бСзопасности ΠΏΠΎΠ»Π΅Ρ‚ΠΎΠ² Π’Π‘, ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΡŽΡ‚ ΠΊ чистотС примСняСмого ΠΏΡ€ΠΈ эксплуатации Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° высокиС трСбования. ВмСстС с Ρ‚Π΅ΠΌ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΈ источники обводнСния Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ источником экономичСских ΠΏΠΎΡ‚Π΅Ρ€ΡŒ, ваТнСйшим ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅ΠΌ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΡΡ‚ΠΈ бизнСса Ρ‚ΠΎΠΏΠ»ΠΈΠ²ΠΎΠ·Π°ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΎΠ³ΠΎ комплСкса. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Π·Π°Π΄Π°Ρ‡Π° создания Π½Π°Π΄Π΅ΠΆΠ½Ρ‹Ρ… ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ контроля этих загрязнСний, Π² частности опрСдСлСния Π²ΠΎΠ΄Ρ‹ Π² Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π΅ ΠΏΡ€ΠΈ Π·Π°ΠΏΡ€Π°Π²ΠΊΠ΅ Π’Π‘ ΠΈ нСобходимости ΡƒΡ…ΠΎΠ΄Π° ΠΎΡ‚ чСловСчСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ становится автоматизация процСссов ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° качСства Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°, ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΎΡ‚ дискрСтных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² контроля ΠΊ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΌ, ΠΎΡ‚ статичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² контроля ΠΊ динамичСским (ΠΏΠΎΡ‚ΠΎΡ‡Π½Ρ‹ΠΌ), ΠΎΡ‚ косвСнных способов ΠΊ прямым. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ возмоТности сквозного ΡƒΡ‡Π΅Ρ‚Π° ΠΈ Π°Π½Π°Π»ΠΈΠ·Π°ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² чистоты Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π½Π° всСх этапах ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. РассмотрСны способы, ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· извСстных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ устройств, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… для опрСдСлСния, измСрСния ΠΈ ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΈ: фактичСской обводнСнности; присутствия растворСнной, свободной ΠΈ суммарной Π²ΠΎΠ΄Ρ‹ Π² Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π΅. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ тСхничСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ контроля уровня фактичСской обводнСнности ΠΏΠΎΡ‚ΠΎΠΊΠ° Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² процСссах авиатопливообСспСчСния ΠΈ Π·Π°ΠΏΡ€Π°Π²ΠΊΠΈ Π’Π‘ Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ систСмС, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ on-line ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΈ динамичСскоС ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ количСствСнного содСрТания растворСнной ΠΈ свободной Π²ΠΎΠ΄Ρ‹ Π² ΠΏΠΎΡ‚ΠΎΠΊΠ΅ Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ тСхничСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΌΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ количСствСнного содСрТания Π²ΠΎΠ΄Ρ‹ Π² ΠΏΠΎΡ‚ΠΎΠΊΠ΅ Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. ΠŸΡ€ΠΈ этом Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π²ΠΎΠ΄Ρ‹ Π² Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π΅ совмСщСно с тСхнологичСским процСссом контроля очистки Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΎΡ‚ Π²ΠΎΠ΄Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° адаптивная ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π°Ρ систСма Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° уровня обводнСнности Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² ΠΏΠΎΡ‚ΠΎΠΊΠ΅, которая ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ сущСствСнно ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ тСхнологичСских процСссов авиатопливообСспСчСния Π²ΠΎΠ·Π΄ΡƒΡˆΠ½Ρ‹Ρ… судов, ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ влияниС чСловСчСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ комплСкса авиатопливообСспСчСния. БистСма ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π° для осущСствлСния Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ контроля (ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π°) обводнСнности Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² ΠΏΠΎΡ‚ΠΎΠΊΠ΅ Π½Π° всСх этапах двиТСния Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°: ΠΏΡ€ΠΈΠ΅ΠΌΠ°, хранСния ΠΈ Π²Ρ‹Π΄Π°Ρ‡ΠΈ Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°, ΠΈ Π·Π°ΠΏΡ€Π°Π²ΠΊΠΈ Π’Π‘, Π² частности складов Π³ΠΎΡ€ΡŽΡ‡Π΅-смазочных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², Ρ‚ΠΎΠΏΠ»ΠΈΠ²ΠΎΠ·Π°ΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… комплСксов, ΠΈ ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ² ΠΏΡ€Π΅Π΄ΠΏΠ΅Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π»ΠΈΠ²Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована Π² Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎΠΉ систСмС Π’Π‘ ΠΊΠ°ΠΊ систСма прСдотвращСния обводнСния Π°Π²ΠΈΠ°Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. Π’Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ срСдств Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ качСство управлСния процСссами авиатопливообСспСчСния ΠΈ Π·Π°ΠΏΡ€Π°Π²ΠΊΠΈ Π’Π‘ для обСспСчСния принятия своСврСмСнных ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π½Π° основС Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ условии ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ систСмы Π² систСму аэропорта для ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° Π΄Π°Π½Π½Ρ‹ΠΌΠΈ

    Hadron Production via e+e- Collisions with Initial State Radiation

    Full text link
    A novel method of studying e+e- annihilation into hadrons using initial state radiation at e+e- colliders is described. After brief history of the method, its theoretical foundations are considered. Numerous experiments in which exclusive cross sections of e+e- annihilation into hadrons below the center-of-mass energy of 5 GeV have been measured are presented. Some applications of the results obtained to fundamental tests of the Standard Model are listed.Comment: 50 pages, 88 figures, accepted for publication in Rev. Mod. Phy

    Study of the e+eβˆ’β†’Ξ·Ξ³e^+e^-\to\eta\gamma process with SND detector at the VEPP-2M e+eβˆ’e^+e^- collider

    Full text link
    In experiment with the SND detector at VEPP-2M e+eβˆ’e^+e^- collider the e+eβˆ’β†’Ξ·Ξ³e^+e^-\to\eta\gamma cross section was measured in the energy range EE=0.60--1.38 GeV with the integrated luminosity of 27.8 pbβˆ’1^{-1}. The measured cross section is well described by the vector meson dominance model with contributions from the ρ(770)\rho(770), Ο‰(783)\omega(783), Ο•(1020)\phi(1020), ρ′(1465)\rho^{\prime}(1465) resonances and agrees with results of previous measurements. The decay probabilities \BR(\phi\to\eta\gamma), \BR(\omega\to\eta\gamma) and \BR(\rho\to\eta\gamma) were measured with the accuracies better than or comparable to the world averages.Comment: 13 pages, 6 figures, 5 table

    Study of Ξ”(1232)\Delta(1232) isobar electroproduction at VEPP-2M e+eβˆ’e^+e^- collider

    Full text link
    Results from the Spherical Nonmagnetic Detector (SND) on Ξ”(1232)\Delta (1232) isobar electroproduction in the collisions of beam electrons (positrons) and residual gas nuclei in the VEPP-2M e+eβˆ’e^+e^- collider are presented. On the basis of the obtained data the expected counting rate of this process in future high luminosity e+eβˆ’e^+e^- colliders (~Ο•\phi-, cc-Ο„\tau- and bb-factories) was estimated.Comment: 7 pages LATEX and 3 figure

    Update of the e^+e^-\to\pi^+\pi^- cross section measured by SND detector in the energy region 400<\sqrt{s}<1000 MeV

    Full text link
    The corrected cross section of the e^+e^-\to\pi^+\pi^- process measured in the SND experiment at the VEPP-2M e^+e^- collider is presented. The update is necessary due to a flaw in the e^+e^-\to\pi^+\pi^- and e^+e^-\to\mu^+\mu^- Monte Carlo events generators used previously in data analysis.Comment: 10 pages,7 figure

    Study of the ρ\rho, Ο‰\omega, Ο•β†’Ξ·Ξ³β†’7Ξ³\phi\to\eta\gamma\to 7\gamma Decays with an SND Detector on a VEPP-2M Collider

    Full text link
    The e+eβˆ’β†’Ξ·Ξ³β†’7Ξ³e^+e^-\to\eta\gamma\to 7\gamma process was studied in the energy range 2E=600Γ·10602E=600\div 1060 MeV with an SND detector on a VEPP-2M e+eβˆ’e^+e^- collider. The decay branching ratios B(Ο•β†’Ξ·Ξ³)=(1.343Β±0.012Β±0.055)β‹…10βˆ’2B(\phi\to\eta\gamma)=(1.343\pm 0.012\pm 0.055)\cdot 10^{-2}, B(Ο‰β†’Ξ·Ξ³)=(4.60Β±0.72Β±0.19)β‹…10βˆ’4B(\omega\to\eta\gamma)=(4.60\pm 0.72\pm 0.19)\cdot 10^{-4}, and B(ρ→ηγ)=(2.69Β±0.32Β±0.16)β‹…10βˆ’4B(\rho\to\eta\gamma)=(2.69\pm 0.32\pm 0.16)\cdot 10^{-4} were measured.Comment: 5 pages, 4 figure

    Study of the process e+e-\to \mu+\mu- in the energy region \sqrt{s}=980, 1040 -- 1380 MeV

    Full text link
    The cross section of the process e+e-\to\mu+\mu- was measured in the SND experiment at the VEPP-2M e+e- collider in the energy region \sqrt{s}=980, 1040 -- 1380 MeV. The event numbers of the process e+e-\to\mu+\mu- were normalized to the integrated luminosity measured using e+e-\to e+e- and e+e-\to\gamma\gamma processes. The ratio of the measured cross section to the theoretically predicted value is 1.006\pm 0.007 \pm 0.016 and 1.005 \pm 0.007 \pm 0.018 in the first and second case respectively. Using results of the measurements, the electromagnetic running coupling constant \alpha in the energy region \sqrt{s}=1040 -- 1380 MeV was obtained = 134.1\pm 0.5 \pm 1.2 and this is in agreement with theoretical expectation.Comment: 29 pages, 23 figure
    • …
    corecore