4,234 research outputs found

    Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions

    Get PDF
    We derive relations between various observables for N particles with zero-range or short-range interactions, in continuous space or on a lattice, in two or three dimensions, in an arbitrary external potential. Some of our results generalise known relations between large-momentum behavior of the momentum distribution, short-distance behavior of the pair correlation function and of the one-body density matrix, derivative of the energy with respect to the scattering length or to time, and the norm of the regular part of the wavefunction; in the case of finite-range interactions, the interaction energy is also related to dE/da. The expression relating the energy to a functional of the momentum distribution is also generalised, and is found to break down for Efimov states with zero-range interactions, due to a subleading oscillating tail in the momentum distribution. We also obtain new expressions for the derivative of the energy of a universal state with respect to the effective range, the derivative of the energy of an efimovian state with respect to the three-body parameter, and the second order derivative of the energy with respect to the inverse (or the logarithm in the two-dimensional case) of the scattering length. The latter is negative at fixed entropy. We use exact relations to compute corrections to exactly solvable three-body problems and find agreement with available numerics. For the unitary gas, we compare exact relations to existing fixed-node Monte-Carlo data, and we test, with existing Quantum Monte Carlo results on different finite range models, our prediction that the leading deviation of the critical temperature from its zero range value is linear in the interaction effective range r_e with a model independent numerical coefficient.Comment: 51 pages, 5 figures. Split into three articles: Phys. Rev. A 83, 063614 (2011) [arXiv:1103.5157]; Phys. Rev. A 86, 013626 (2012) [arXiv:1204.3204]; Phys. Rev. A 86, 053633 (2012) [ arXiv:1210.1784

    Circular photon drag effect in bulk tellurium

    Full text link
    The circular photon drag effect is observed in a bulk semiconductor. The photocurrent caused by a transfer of both translational and angular momenta of light to charge carriers is detected in tellurium in the mid-infrared frequency range. Dependencies of the photocurrent on the light polarization and on the incidence angle agree with the symmetry analysis of the circular photon drag effect. Microscopic models of the effect are developed for both intra- and inter-subband optical absorption in the valence band of tellurium. The shift contribution to the circular photon drag current is calculated. An observed decrease of the circular photon drag current with increase of the photon energy is explained by the theory for inter-subband optical transitions. Theoretical estimates of the circular photon drag current agree with the experimental data.Comment: 8 pages, 4 figure

    Global in Time Solutions to Kolmogorov-Feller Pseudodifferential Equations with Small Parameter

    Full text link
    The goal in this paper is to demonstrate a new method for constructing global-in-time approximate (asymptotic) solutions of (pseudodifferential) parabolic equations with a small parameter. We show that, in the leading term, such a solution can be constructed by using characteristics, more precisely, by using solutions of the corresponding Hamiltonian system and without using any integral representation. For completeness, we also briefly describe the well-known scheme developed by V.P.Maslov for constructing global-in-time solutions.Comment: 27 page

    Observation of macroscopic Landau-Zener transitions in a superconducting device

    Full text link
    A two-level system traversing a level anticrossing has a small probability to make a so-called Landau-Zener (LZ) transition between its energy bands, in deviation from simple adiabatic evolution. This effect takes on renewed relevance due to the observation of quantum coherence in superconducting qubits (macroscopic "Schrodinger cat" devices). We report an observation of LZ transitions in an Al three-junction qubit coupled to a Nb resonant tank circuit.Comment: REVTeX4, 4pp., 4 EPS figures. v2: clarifications added; final, to appear in EP

    Three-body problem for ultracold atoms in quasi-one-dimensional traps

    Full text link
    We study the three-body problem for both fermionic and bosonic cold atom gases in a parabolic transverse trap of lengthscale a⊥a_\perp. For this quasi-one-dimensional (1D) problem, there is a two-body bound state (dimer) for any sign of the 3D scattering length aa, and a confinement-induced scattering resonance. The fermionic three-body problem is universal and characterized by two atom-dimer scattering lengths, aada_{ad} and badb_{ad}. In the tightly bound `dimer limit', a⊥/a→∞a_\perp/a\to\infty, we find bad=0b_{ad}=0, and aada_{ad} is linked to the 3D atom-dimer scattering length. In the weakly bound `BCS limit', a⊥/a→−∞a_\perp/a\to-\infty, a connection to the Bethe Ansatz is established, which allows for exact results. The full crossover is obtained numerically. The bosonic three-body problem, however, is non-universal: aada_{ad} and badb_{ad} depend both on a⊥/aa_\perp/a and on a parameter R∗R^* related to the sharpness of the resonance. Scattering solutions are qualitatively similar to fermionic ones. We predict the existence of a single confinement-induced three-body bound state (trimer) for bosons.Comment: 20 pages, 6 figures, accepted for publication in PRA, appendix on the derivation of an integral formula for the Hurvitz zeta functio

    Method for direct identification of optimum modal values of dynamical systems

    Get PDF
    The synthesis method of a dynamic system by successive solutions of two systems of algebraic equations, variables that are characteristic polynomial coefficients and mechanical parameters of the system

    Underthreshold resonances in three-particle molecular systems

    Get PDF
    To determine the lifetimes of Efimov states of negative two-atomic ions, the problem of resonance scattering of a light particle on a pair of identical particles has been considered. An analytic expression has been obtained for resonance widths in the limit of forces of zero radius and low binding energies in pairs. Calculations are compared with the numerical solution of the Faddeev integral equations in a wide region of masses of the light particle. It is shown that the widths of underthreshold resonances in the scattering amplitude obtained from the integral equations with the Yamaguchi potential are well described by the analytic expression, which allows this expression to be used in the mass region inaccessible for numerical calculations. It has been concluded that the lifetime of highly excited negative molecular ions with a binding energy close to the threshold of disintegration is practically unlimited.Comment: Latex, 15 page
    • …
    corecore