33 research outputs found

    Inactivation of the transforming growth factor β type II receptor in human small cell lung cancer cell lines

    Get PDF
    Transforming growth factor β (TGF-β) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-β due to lack of type II receptor (RII) has been described in some cancer types including small cell lung cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature of the mutation, which has not previously been observed in RII, has been linked to exposure to benzo[a]-pyrene, a component of cigarette smoke. Since RII has been mapped to chromosome 3p22 and nearby loci are often hypermethylated in SCLC, it was examined whether the lack of RII expression was due to hypermethylation. Southern blot analysis of the RII promoter did not show altered methylation patterns. The restriction endonuclease pattern of the RII gene was altered in two SCLC cell lines when digested with Sma 1. However, treatment with 5-aza-2′-deoxycytidine did not induce expression of RII mRNA. Our results indicate that in SCLC lack of RII mRNA is not commonly due to mutations and inactivation of RII transcription was not due to hypermethylation of the RII promoter or gene. Thus, these data show that in most cases of the SCLC cell lines, the RII gene and promoter is intact in spite of absent RII expression. However, the nature of the mutation found could suggest that it was caused by cigarette smoking. © 1999 Cancer Research Campaig

    Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA

    Get PDF
    Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells

    Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients.

    No full text
    The aim of the study was to assess the importance of the measurement of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2) in patients with colorectal cancer (CRC) in relation to clinicopathological features of tumor and patients' survival. Additionally, we determined serum MMP-2 and TIMP-2 in colorectal adenoma (CA) patients and healthy controls and compared them with tumor markers, CEA and CA 19-9. The serum levels of MMP-2 and TIMP-2 in 91 CRC patients, 28 CA subjects and 91 healthy controls were determined by ELISA method, but concentrations of CEA and CA 19-9 using MEIA method. Nonparametric statistical analyses were used. Serum levels of MMP-2 and TIMP-2 were significantly lower in CRC patients than in healthy subjects and decreased with tumor stage. Additionally, MMP-2 concentrations were significantly lower in patients with CRC than in CA group. Diagnostic sensitivity of TIMP-2 (59%) was the highest among biomarkers tested and increased in combined use with CEA (79%). Moreover, the area under ROC curve (AUC) of TIMP-2 was larger than AUC of MMP-2 in differentiation between CRC and healthy subjects, but lower than AUC of matrix metalloproteinase 2 in differentiation between colorectal cancer and adenoma. Our findings suggest clinical usefulness of TIMP-2 as a biomarker in the diagnosis of CRC, especially in combination with CEA. However, further investigation is necessary

    Proteolysis in human breast and colorectal cancer

    Get PDF
    Proteolysis occurs when proteinase activity exceeds inhibitor activity. Proteolysis is normally tightly regulated and is involved in cancer invasion and metastasis. The aim of this study was to compare proteolysis in breast and colorectal cancer. Proteinase and inhibitor expression were analysed in paired tumour and normal tissue samples from 43 breast and 24 colorectal cancer patients using substrate zymography, Western blotting and quenched fluorescence substrate hydrolysis. The expression of the latent forms of matrix metalloproteinase-2 (MMP-2), MMP-3 and MMP-9, urokinase plasminogen activator (uPA), tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression were observed in both tumour and normal tissue samples from breast and colorectal tissue; however, expression was greater in the tumour tissue. Expression of active MMP-2 and MMP-9 and the total MMP activity were greater in tumour compared to normal samples in both tissues (P< 0.05). The expression of all proteinases and total MMP activity was greater in colorectal tissue than breast tissue samples. Breast and colorectal cancer demonstrated different proteinase profiles, however proteolysis in both tissues was greater in tumour tissue than normal tissue
    corecore