274 research outputs found
Gaia Data Release 1. The Cepheid and RR Lyrae star pipeline and its application to the south ecliptic pole region
Context. The European Space Agency spacecraft Gaia is expected to observe about 10,000 Galactic Cepheids and over 100,000 Milky Way RR Lyrae stars (a large fraction of which will be new discoveries), during the five-year nominal lifetime spent scanning the whole sky to a faint limit of G = 20.7 mag, sampling their light variation on average about 70 times. Aims. We present an overview of the Specific Objects Study (SOS) pipeline developed within the Coordination Unit 7 (CU7) of the Data Processing and Analysis Consortium (DPAC), the coordination unit charged with the processing and analysis of variable sources observed by Gaia, to validate and fully characterise Cepheids and RR Lyrae stars observed by the spacecraft. The algorithms devel- oped to classify and extract information such as the pulsation period, mode of pulsation, mean magnitude, peak-to-peak amplitude of the light variation, sub-classification in type, multiplicity, secondary periodicities, light curve Fourier decomposition parameters, as well as physical parameters such as mass, metallicity, reddening and, for classical Cepheids, age, are briefly described. Methods. The full chain of the CU7 pipeline was run on the time-series photometry collected by Gaia during 28 days of Ecliptic Pole Scanning Law (EPSL) and over a year of Nominal Scanning Law (NSL), starting from the general Variability Detection, general Characterisation, proceeding through the global Classification and ending with the detailed checks and typecasting of the SOS for Cepheids and RR Lyrae stars (SOS Cep&RRL). We describe in more detail how the SOS Cep&RRL pipeline was specifically tailored to analyse Gaia’s G-band photometric time-series with a South Ecliptic Pole (SEP) footprint, which covers an external region of the Large Magellanic Cloud (LMC), and to produce results for confirmed RR Lyrae stars and Cepheids to be published in Gaia Data Release 1 (Gaia DR1). Results. G-band time-series photometry and characterization by the SOS Cep&RRL pipeline (mean magnitude and pulsation char- acteristics) are published in Gaia DR1 for a total sample of 3,194 variable stars, 599 Cepheids and 2,595 RR Lyrae stars, of which 386 (43 Cepheids and 343 RR Lyrae stars) are new discoveries by Gaia. All 3,194 stars are distributed over an area extending 38 degrees on either side from a point offset from the centre of the LMC by about 3 degrees to the north and 4 degrees to the east. The vast majority, but not all, are located within the LMC. The published sample also includes a few bright RR Lyrae stars that trace the outer halo of the Milky Way in front of the LMC
Measurement of double beta decay of ¹⁰⁰Mo to excited states in the NEMO 3 experiment
The double beta decay of ¹⁰⁰Mo to the 0_{1}^{+} and 2_{1}^{+} excited states of ¹⁰⁰Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of ¹⁰⁰Mo to the excited 0_{1}^{+} state is measured to be T_{1/2}^{2v} = [5.7_{-0.9}^{+1.3} (stat.) ± 0.8 (syst.)] x 10²⁰ y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0_{1}^{+} state has been found. The corresponding half-life limit is T_{1/2}^{0v} (0⁺→0_{1}^{+}) > 8.9 x 10²² y (at 90% C.L.). The search for the double beta decay to the 2_{1}^{+} excited state has allowed the determination of limits on the half-life for the two neutrino mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.1 x 10²¹ y (at 90% C.L.) and for the neutrinoless mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.6 x 10²³ y (at 90% C.L.)
Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector
After analysis of 5797 h of data from the detector NEMO3, new limits on
neutrinoless double beta decay of Mo-100 (T_{1/2} > 3.1 10^{23} y, 90% CL) and
Se-82 (T_{1/2} > 1.4 10^{23} y, 90% CL) have been obtained. The corresponding
limits on the effective majorana neutrino mass are: m < (0.8-1.2) eV and m <
(1.5-3.1) eV, respectively. Also the limits on double-beta decay with Majoron
emission are: T_{1/2} > 1.4 10^{22} y (90% CL) for Mo-100 and T_{1/2}> 1.2
10^{22} y (90%CL) for Se-82. Corresponding bounds on the Majoron-neutrino
coupling constant are g < (0.5-0.9) 10^{-4} and < (0.7-1.6) 10^{-4}.
Two-neutrino 2b-decay half-lives have been measured with a high accuracy,
T_{1/2} Mo-100 = [7.68 +- 0.02(stat) +- 0.54(syst) ] 10^{18} y and T_{1/2}
Se-82 = [10.3 +- 0.3(stat) +- 0.7(syst) ] 10^{19} y.Comment: 5 pages, 4 figure
Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment
The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru
is studied using the NEMO 3 data. After the analysis of 8024 h of data the
half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1
state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x
10^20 y. The signal-to-background ratio is equal to 3. Information about energy
and angular distributions of emitted electrons is also obtained. No evidence
for neutrinoless double beta decay to the excited 0^+_1 state has been found.
The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y
(at 90% C.L.).
The search for the double beta decay to the 2^+_1 excited state has allowed
the determination of limits on the half-life for the two neutrino mode
T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the
neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).Comment: 23 pages, 7 figures, 4 tables, submitted to Nucl. Phy
The star formation in the L1615/L1616 cometary cloud
The present work aims at performing a comprehensive census and
characterisation of the pre-main sequence (PMS) population in the cometary
cloud L1615/L1616, in order to assess the significance of the triggered star
formation scenario and investigate the impact of massive stars on its star
formation history and mass spectrum. Our study is based on UBVRcIc and JHKs
photometry, as well as optical multi-object spectroscopy. We performed a
physical parametrisation of the young stellar population in L1615/L1616. We
identified 25 new T Tauri stars mainly projected on the dense head of the
cometary cloud, almost doubling the current number of known members. We studied
the spatial distribution of the cloud members as a function of the age and
H emission. The star formation efficiency in the cloud is about 7-8 %,
as expected for molecular clouds in the vicinity of OB associations. The slope
of the initial mass function (IMF), in the mass range 0.1<M<5.5 , is
consistent with that of other T and OB associations, providing further support
of an universal IMF down to the hydrogen burning limit, regardless of
environmental conditions. The cometary appearance, as well as the high star
formation efficiency, can be explained in terms of triggered star formation
induced by the strong UV radiation from OB stars or supernovae shockwaves. The
age spread as well as both the spatial and age distribution of the PMS objects
provide strong evidence of sequential, multiple events and possibly still
ongoing star formation activity in the cloud.Comment: 59 pages, 14 figures, accepted for publication in Ap
PPARβ activation inhibits melanoma cell proliferation involving repression of the Wilms’ tumour suppressor WT1
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that strongly influence molecular signalling in normal and cancer cells. Although increasing evidence suggests a role of PPARs in skin carcinogenesis, only expression of PPARγ has been investigated in human melanoma tissues. Activation of PPARα has been shown to inhibit the metastatic potential, whereas stimulation of PPARγ decreased melanoma cell proliferation. We show here that the third member of the PPAR family, PPARβ/δ is expressed in human melanoma samples. Specific pharmacological activation of PPARβ using GW0742 or GW501516 in low concentrations inhibits proliferation of human and murine melanoma cells. Inhibition of proliferation is accompanied by decreased expression of the Wilms’ tumour suppressor 1 (WT1), which is implicated in melanoma proliferation. We demonstrate that PPARβ directly represses WT1 as (1) PPARβ activation represses WT1 promoter activity; (2) in chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified a binding element for PPARβ in the WT1 promoter; (3) deletion of this binding element abolishes repression by PPARβ and (4) the WT1 downstream molecules nestin and zyxin are down-regulated upon PPARβ activation. Our findings elucidate a novel mechanism of signalling by ligands of PPARβ, which leads to suppression of melanoma cell growth through direct repression of WT1
<i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.
Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.
Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.
Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7.
Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
- …