424 research outputs found
Prospects for detecting the 21cm forest from the diffuse intergalactic medium with LOFAR
We discuss the feasibility of the detection of the 21cm forest in the diffuse
IGM with the radio telescope LOFAR. The optical depth to the 21cm line has been
derived using simulations of reionization which include detailed radiative
transfer of ionizing photons. We find that the spectra from reionization models
with similar total comoving hydrogen ionizing emissivity but different
frequency distribution look remarkably similar. Thus, unless the reionization
histories are very different from each other (e.g. a predominance of UV vs.
x-ray heating) we do not expect to distinguish them by means of observations of
the 21cm forest. Because the presence of a strong x-ray background would make
the detection of 21cm line absorption impossible, the lack of absorption could
be used as a probe of the presence/intensity of the x-ray background and the
thermal history of the universe. Along a random line of sight LOFAR could
detect a global suppression of the spectrum from z>12, when the IGM is still
mostly neutral and cold, in contrast with the more well-defined, albeit broad,
absorption features visible at lower redshift. Sharp, strong absorption
features associated with rare, high density pockets of gas could be detected
also at z~7 along preferential lines of sight.Comment: 12 pages, 13 figures. MNRAS, in pres
Foregrounds for observations of the cosmological 21 cm line: II. Westerbork observations of the fields around 3C196 and the North Celestial Pole
In the coming years a new insight into galaxy formation and the thermal
history of the Universe is expected to come from the detection of the highly
redshifted cosmological 21 cm line. The cosmological 21 cm line signal is
buried under Galactic and extragalactic foregrounds which are likely to be a
few orders of magnitude brighter. Strategies and techniques for effective
subtraction of these foreground sources require a detailed knowledge of their
structure in both intensity and polarization on the relevant angular scales of
1-30 arcmin. We present results from observations conducted with the Westerbork
telescope in the 140-160 MHz range with 2 arcmin resolution in two fields
located at intermediate Galactic latitude, centred around the bright quasar
3C196 and the North Celestial Pole. They were observed with the purpose of
characterizing the foreground properties in sky areas where actual observations
of the cosmological 21 cm line could be carried out. The polarization data were
analysed through the rotation measure synthesis technique. We have computed
total intensity and polarization angular power spectra. Total intensity maps
were carefully calibrated, reaching a high dynamic range, 150000:1 in the case
of the 3C196 field. [abridged]Comment: 20 pages, 22 figures, accepted for publication in A&A. A version with
full resolution figures is available at
http://www.astro.rug.nl/~bernardi/NCP_3C196/bernardi.pd
Fast Large-Scale Reionization Simulations
We present an efficient method to generate large simulations of the Epoch of
Reionization (EoR) without the need for a full 3-dimensional radiative transfer
code. Large dark-matter-only simulations are post-processed to produce maps of
the redshifted 21cm emission from neutral hydrogen. Dark matter haloes are
embedded with sources of radiation whose properties are either based on
semi-analytical prescriptions or derived from hydrodynamical simulations. These
sources could either be stars or power-law sources with varying spectral
indices. Assuming spherical symmetry, ionized bubbles are created around these
sources, whose radial ionized fraction and temperature profiles are derived
from a catalogue of 1-D radiative transfer experiments. In case of overlap of
these spheres, photons are conserved by redistributing them around the
connected ionized regions corresponding to the spheres. The efficiency with
which these maps are created allows us to span the large parameter space
typically encountered in reionization simulations. We compare our results with
other, more accurate, 3-D radiative transfer simulations and find excellent
agreement for the redshifts and the spatial scales of interest to upcoming 21cm
experiments. We generate a contiguous observational cube spanning redshift 6 to
12 and use these simulations to study the differences in the reionization
histories between stars and quasars. Finally, the signal is convolved with the
LOFAR beam response and its effects are analyzed and quantified. Statistics
performed on this mock data set shed light on possible observational strategies
for LOFAR.Comment: 18 pages, 21 figures, submitted to MNRAS For high-resolution images
follow "http://www.astro.rug.nl/~thomas/eormap.pdf
Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics
Detecting redshifted 21-cm emission from neutral hydrogen in the early Universe promises to give direct constraints on the epoch of reionization (EoR). It will, though, be very challenging to extract the cosmological signal (CS) from foregrounds and noise which are orders of magnitude larger. Fortunately, the signal has some characteristics which differentiate it from the foregrounds and noise, and we suggest that using the correct statistics may tease out signatures of reionization. We generate mock data cubes simulating the output of the Low Frequency Array (LOFAR) EoR experiment. These cubes combine realistic models for Galactic and extragalactic foregrounds and the noise with three different simulations of the CS. We fit out the foregrounds, which are smooth in the frequency direction, to produce residual images in each frequency band. We denoise these images and study the skewness of the one-point distribution in the images as a function of frequency. We find that, under sufficiently optimistic assumptions, we can recover the main features of the redshift evolution of the skewness in the 21-cm signal. We argue that some of these features ¿ such as a dip at the onset of reionization, followed by a rise towards its later stages ¿ may be generic, and give us a promising route to a statistical detection of reionization
Constraining the epoch of reionization with the variance statistic: simulations of the LOFAR case
Several experiments are underway to detect the cosmic redshifted 21-cm signal
from neutral hydrogen from the Epoch of Reionization (EoR). Due to their very
low signal-to-noise ratio, these observations aim for a statistical detection
of the signal by measuring its power spectrum. We investigate the extraction of
the variance of the signal as a first step towards detecting and constraining
the global history of the EoR. Signal variance is the integral of the signal's
power spectrum, and it is expected to be measured with a high significance. We
demonstrate this through results from a simulation and parameter estimation
pipeline developed for the Low Frequency Array (LOFAR)-EoR experiment. We show
that LOFAR should be able to detect the EoR in 600 hours of integration using
the variance statistic. Additionally, the redshift () and duration
() of reionization can be constrained assuming a parametrization. We
use an EoR simulation of and to test the
pipeline. We are able to detect the simulated signal with a significance of 4
standard deviations and extract the EoR parameters as and in 600 hours,
assuming that systematic errors can be adequately controlled. We further show
that the significance of detection and constraints on EoR parameters can be
improved by measuring the cross-variance of the signal by cross-correlating
consecutive redshift bins.Comment: 13 pages, 14 figures, Accepted for publication in MNRA
Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis
Background
Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy.
Methods
We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance.
Results
We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography.
Conclusion
Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data
Foregrounds for observations of the cosmological 21 cm line: I. First Westerbork measurements of Galactic emission at 150 MHz in a low latitude field
We present the first results from a series of observations conducted with the
Westerbork telescope in the 140--160 MHz range with a 2 arcmin resolution aimed
at characterizing the properties of the foregrounds for epoch of reionization
experiments. For the first time we have detected fluctuations in the Galactic
diffuse emission on scales greater than 13 arcmin at 150 MHz, in the low
Galactic latitude area known as Fan region. Those fluctuations have an of
14 K. The total intensity power spectrum shows a power--law behaviour down to
with slope . The detection of
diffuse emission at smaller angular scales is limited by residual point
sources. We measured an confusion noise of 3 mJy beam.
Diffuse polarized emission was also detected for the first time at this
frequency. The polarized signal shows complex structure both spatially and
along the line of sight. The polarization power spectrum shows a power--law
behaviour down to with slope .
The of polarization fluctuations is 7.2 K on 4 arcmin scales. By
extrapolating the measured spectrum of total intensity emission, we find a
contamination on the cosmological signal of K on 5 arcmin scales and a corresponding value
of 18.3 K at the same angular scale. The level of the polarization power
spectrum is K on 5 arcmin scales. Given its exceptionally
bright polarized signal, the Fan region is likely to represent an upper limit
on the sky brightness at moderate and high Galactic latitude.Comment: Minor corrections made to match the final version printed on A&A. A
version with high resolution figures is available at
http://www.astro.rug.nl/~bernardi/FAN/fan.pd
Foreground simulations for the LOFAR - Epoch of Reionization Experiment
Future high redshift 21-cm experiments will suffer from a high degree of
contamination, due both to astrophysical foregrounds and to non-astrophysical
and instrumental effects. In order to reliably extract the cosmological signal
from the observed data, it is essential to understand very well all data
components and their influence on the extracted signal. Here we present
simulated astrophysical foregrounds datacubes and discuss their possible
statistical effects on the data. The foreground maps are produced assuming 5
deg x 5 deg windows that match those expected to be observed by the LOFAR
Epoch-of-Reionization (EoR) key science project. We show that with the expected
LOFAR-EoR sky and receiver noise levels, which amount to ~52 mK at 150 MHz
after 300 hours of total observing time, a simple polynomial fit allows a
statistical reconstruction of the signal. We also show that the polynomial
fitting will work for maps with realistic yet idealised instrument response,
i.e., a response that includes only a uniform uv coverage as a function of
frequency and ignores many other uncertainties. Polarized galactic synchrotron
maps that include internal polarization and a number of Faraday screens along
the line of sight are also simulated. The importance of these stems from the
fact that the LOFAR instrument, in common with all current interferometric EoR
experiments has an instrumentally polarized response.Comment: 18 figures, 3 tables, accepted to be published in MNRA
Pore structure evaluation of carbon nanotube and inorganic membranes through sorption and permeability studies
Pore structure evaluation of carbon nanotube and inorganic membranes through sorption and permeability studies
- …
