8 research outputs found

    Seasonal forecast of French Mediterranean heavy precipitating events linked to weather regimes

    Get PDF
    Seasonal predictability of local precipitation is rather weak in the mid-latitudes. This is the case when assessing the skill of the seasonal forecast of Heavy Precipitating Event (HPE) extreme occurrence over the French Mediterranean coast during the fall season. Tropics to extra-tropics teleconnection patterns do appear when averaging analyzed fields over the years characterised by a frequency of HPE occurrence in the upper 17% of the distribution. A methodology taking weather regime occurrence into account as an intermediate step to forecast HPE extreme occurrence is presented. For the period 1960 to 2001 and four different sets of seasonal forecast, the Economical Value is doubled, compared to the score obtained with the simulated local precipitation data, when using a linear model (Linear Discriminant Analysis in this case) taking simulated 200 hPa velocity potential–stream function regime occurrences as predictors. Interestingly, larger scores are shown for this couple of fields over a large-scale domain including the tropics than for the 500 hPa geopotential height over an Euro–Atlantic domain, despite a tighter link of the latter field to the local precipitation

    On the numerical resolution of the bottom layer in simulations of oceanic gravity currents

    Get PDF
    International audienceThe role of an increased numerical vertical resolution, leading to an explicit resolution of the bottom Ekman layer dynamics, is investigated. Using the hydrostatic ocean model NEMO-OPA9, we demonstrate that the dynamics of an idealised gravity current (on an inclined plane), is well captured when a few (around five) sigma-coordinate levels are added near the ocean floor. Such resolution allows to considerably improve the representation of the descent and transport of the gravity current and the Ekman dynamics near the ocean floor, including the important effect of Ekman veering, which is usually neglected in today's simulations of the ocean dynamics. Results from high resolution simulations (with σ and z-coordinates) are compared to simulations with a vertical resolution commonly employed in today's ocean models. The latter show a downslope transport that is reduced by almost an order of magnitude and the decrease in the along slope transport is reduced six-fold. We strongly advocate for an increase of the numerical resolution at the ocean floor, similar to the way it is done at the ocean surface and at the lower boundary in atmospheric models
    corecore