125 research outputs found

    Anharmonic phonon excitations in subbarrier fusion reactions

    Get PDF
    Recently measured high precision data of fusion excitation function have enabled a detailed study on the effects of nuclear collective excitations on fusion reactions. Using such highly accurate data of the 16^{16}O + 144,148^{144,148}Sm reactions, we discuss the anharmonic properties of collective phonon excitations in 144,148^{144,148}Sm nuclei. It is shown that subbarrier fusion reactions are strongly affected by the anharmonic effects and thus offer an alternative method to extract the static quadrupole moments of phonon states in a spherical nucleus.Comment: 10 pages, To be published in the Proceedings of the Tours Symposium on Nuclear Physics III, Tours, France, September 1997 (American Institute of Physics

    Tests and applications of self-consistent cranking in the interacting boson model

    Get PDF
    The self-consistent cranking method is tested by comparing the cranking calculations in the interacting boson model with the exact results obtained from the SU(3) and O(6) dynamical symmetries and from numerical diagonalization. The method is used to study the spin dependence of shape variables in the sdsd and sdgsdg boson models. When realistic sets of parameters are used, both models lead to similar results: axial shape is retained with increasing cranking frequency while fluctuations in the shape variable γ\gamma are slightly reduced.Comment: 9 pages, 3 ps figures, Revte

    Description of Nuclear Structure Effects in Subbarrier Fusion by the Interacting Boson Model

    Get PDF
    Recent theoretical developments in using the Interacting Boson Model to describe nuclear structure effects in fusion reactions below the Coulomb barrier are reviewed. Methods dealing with linear and all orders coupling between the nuclear excitations and the translational motion are discussed, and the latter is found to lead to a better description of the barrier distribution data. A systematic study of the available data (cross sections, barrier and spin distributions) in rare-earth nuclei is presented.Comment: 9 pages + 2 Figures (in eps form). To be published in the Proceedings of the FUSION97 Conference, South Durras, Australia, March 1997 (J. Phys. G). Full text and figures are also available at http://nucth.physics.wisc.edu/preprints/mad-nt-97-01.abs.htm

    Role of Anharmonicities of Nuclear Vibrations in Fusion Reactions at Sub-barrier Energies

    Get PDF
    We discuss the effects of double octupole and quadrupole phonon excitations in 144^{144}Sm on fusion reactions between 16^{16}O and 144^{144}Sm at subbarrier energies. The effects of anharmonicities of the vibrational states are taken into account by using the sdfsdf-interacting boson model. We compare the results with those in the harmonic limit to show that anharmonicities play an essential role in reproducing the experimental fusion barrier distribution. From the analysis of the high quality fusion data available for this system, we deduce negative static quadrupole moments for both the first 2+^{+} and 3^{-} states in 144^{144}Sm. This is the first time that the sign of static quadrupole moments of phonon states in a spherical nucleus is determined from the data of subbarrier fusion reactions

    Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions

    Get PDF
    Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O and ^{144}Sm by the sdsd- and sdfsdf- interacting boson model, we show that heavy-ion fusion reactions are strongly affected by anharmonic properties of nuclear surface vibrations and nuclear shape, and thus provide a powerful method to study details of nuclear structure and dynamics.Comment: 8 pages, 5 figures, To be published in the Proceedings of the FUSION 97 Conference, South Durras, Australia, March 1997 (J. Phys. G

    Magnetic Dipole Sum Rules for Odd-Mass Nuclei

    Full text link
    Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are derived within the single-j interacting boson-fermion model. We discuss the physical content and geometric interpretation of these sum rules and apply them to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but not with the latter.Comment: 13 pages, Revtex, 1 figure, Phys. Rev. Lett. in pres

    Relations between fusion cross sections and average angular momenta

    Get PDF
    We study the relations between moments of fusion cross sections and averages of angular momentum. The role of the centrifugal barrier and the target deformation in determining the effective barrier radius are clarified. A simple method for extracting average angular momentum from fusion cross sections is demonstrated using numerical examples as well as actual data.Comment: 16 REVTeX pages plus 8 included Postscript figures (uses the epsf macro); submitted to Phys. Rev. C; also available at http://nucth.physics.wisc.edu/preprint

    Quantum Tunneling in Nuclear Fusion

    Get PDF
    Recent theoretical advances in the study of heavy ion fusion reactions below the Coulomb barrier are reviewed. Particular emphasis is given to new ways of analyzing data, such as studying barrier distributions; new approaches to channel coupling, such as the path integral and Green function formalisms; and alternative methods to describe nuclear structure effects, such as those using the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects, higher-order couplings, and shape-phase transitions are elucidated. The current status of the fusion of unstable nuclei and very massive systems are briefly discussed.Comment: To appear in the January 1998 issue of Reviews of Modern Physics. 13 Figures (postscript file for Figure 6 is not available; a hard copy can be requested from the authors). Full text and figures are also available at http://nucth.physics.wisc.edu/preprints

    Moscow-type NN-potentials and three-nucleon bound states

    Get PDF
    A detailed description of Moscow-type (M-type) potential models for the NN interaction is given. The microscopic foundation of these models, which appear as a consequence of the composite quark structure of nucleons, is discussed. M-type models are shown to arise naturally in a coupled channel approach when compound or bag-like six-quark states, strongly coupled to the NN channel, are eliminated from the complete multiquark wave function. The role of the deep-lying bound states that appear in these models is elucidated. By introducing additional conditions of orthogonality to these compound six-quark states, a continuous series of almost on-shell equivalent nonlocal interaction models, characterized by a strong reduction or full absence of a local repulsive core (M-type models), is generated. The predictions of these interaction models for 3N systems are analyzed in detail. It is shown that M-type models give, under certain conditions, a stronger binding of the 3N system than the original phase-equivalent model with nodeless wave functions. An analysis of the 3N system with the new versions of the Moscow NN potential describing also the higher even partial waves is presented. Large deviations from conventional NN force models are found for the momentum distribution in the high momentum region. In particular, the Coulomb displacement energy for nuclei ^3He - ^3H displays a promising agreement with experiment when the ^3H binding energy is extrapolated to the experimental value.Comment: 23 pages Latex, 9 figures, to appear in Phys.Rev.

    Position of the Third Na+ Site in the Aspartate Transporter GltPh and the Human Glutamate Transporter, EAAT1

    Get PDF
    Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na+ ions, one H+ and the counter-transport of one K+ ion. Transport by an archaeal homologue of the human glutamate transporters, GltPh, whose three dimensional structure is known is also coupled to three Na+ ions but only two Na+ ion binding sites have been observed in the crystal structure of GltPh. In order to fully utilize the GltPh structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of GltPh and accurately determine the number and location of Na+ ions coupled to transport. Several sites have been proposed for the binding of a third Na+ ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for GltPh and reveal a new site for the third Na+ ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in GltPh, and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na+ compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na+ ion in GltPh and EAAT1
    corecore