679 research outputs found

    The Yellow Excitonic Series of Cu2O Revisited by Lyman Spectroscopy

    Full text link
    We report on the observation of the yellow exciton Lyman series up to the fourth term in Cu2O by time-resolved mid-infrared spectroscopy. The dependence of the oscillator strength on the principal quantum number n can be well reproduced using the hydrogenic model including an AC dielectric constant, and precise information on the electronic structure of the 1s exciton state can be obtained. A Bohr radius a_{1s}=7.9 A and a 1s-2p transition dipole moment \mu_{1s-2p}= 4.2 eA were found

    Plasmonic rod dimers as elementary planar chiral meta-atoms

    Full text link
    Electromagnetic response of metallic rod dimers is theoretically calculated for arbitrary planar arrangement of rods in the dimer. It is shown that dimers without an in-plane symmetry axis exhibit elliptical dichroism and act as "atoms" in planar chiral metamaterials. Due to a very simple geometry of the rod dimer, such planar metamaterials are much easier in fabrication than conventional split-ring or gammadion-type structures, and lend themselves to a simple analytical treatment based on coupled dipole model. Dependencies of metamaterial's directional asymmetry on the dimer's geometry are established analytically and confirmed in numerical simulations.Comment: 3 page

    Formation and decay of electron-hole droplets in diamond

    Full text link
    We study the formation and decay of electron-hole droplets in diamonds at both low and high temperatures under different excitations by master equations. The calculation reveals that at low temperature the kinetics of the system behaves as in direct-gap semiconductors, whereas at high temperature it shows metastability as in traditional indirect-gap semiconductors. Our results at low temperature are consistent with the experimental findings by Nagai {\em et al.} [Phys. Rev. B {\bf 68}, 081202 (R) (2003)]. The kinetics of the e-h system in diamonds at high temperature under both low and high excitations is also predicted.Comment: 7 pages, 8 figures, revised with some modifications in physics discussion, to be published in PR

    Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3

    Full text link
    Recent neutron scattering measurements performed on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of scattering resembles a waterfall when plotted as a phonon dispersion diagram, and extends vertically from the transverse acoustic (TA) branch near 4 meV to the transverse optic (TO) branch near 9 meV. No zone center optic mode was found. We report new results from an extensive neutron scattering study of pure PZN that exhibits the same waterfall feature. We are able to model the dynamics of the waterfall using a simple coupled-mode model that assumes a strongly q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1 as one approaches the zone center. This model was motivated by the results of Burns and Dacol in 1983, who observed the formation of a randomly-oriented local polarization in PZN at temperatures far above its ferroelectric phase transition temperature. The dramatic increase in Gamma1 is believed to occur when the wavelength of the optic mode becomes comparable to the size of the small polarized micro-regions (PMR) associated with this randomly-oriented local polarization, with the consequence that longer wavelength optic modes cannot propagate and become overdamped. Below Tc=410 K, the intensity of the waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review

    Soft Phonon Anomalies in the Relaxor Ferroelectric Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3

    Full text link
    Neutron inelastic scattering measurements of the polar TO phonon mode dispersion in the cubic relaxor Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3 at 500K reveal anomalous behavior in which the optic branch appears to drop precipitously into the acoustic branch at a finite value of the momentum transfer q=0.2 inverse Angstroms, measured from the zone center. We speculate this behavior is the result of nanometer-sized polar regions in the crystal.Comment: 4 pages, 4 figure

    Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT

    Get PDF
    For motion planning problems involving many or unbounded forms of uncertainty, it may not be possible to identify a path guaranteed to be feasible, requiring consideration of the trade-o between planner conservatism and the risk of infeasibility. Recent work developed the chance constrained rapidly-exploring random tree (CC-RRT) algorithm, a real-time planning algorithm which can e ciently compute risk at each timestep in order to guarantee probabilistic feasibility. However, the results in that paper require the dual assumptions of a linear system and Gaussian uncertainty, two assumptions which are often not applicable to many real-life path planning scenarios. This paper presents several extensions to the CC-RRT framework which allow these assumptions to be relaxed. For nonlinear systems subject to Gaussian process noise, state distributions can be approximated as Gaussian by considering a linearization of the dynamics at each timestep; simulation results demonstrate the e ective of this approach for both open-loop and closed-loop dynamics. For systems subject to non-Gaussian uncertainty, we propose a particle-based representation of the uncertainty, and thus the state distributions; as the number of particles increases, the particles approach the true uncertainty. A key aspect of this approach relative to previous work is the consideration of probabilistic bounds on constraint satisfaction, both at every timestep and over the duration of entire paths.United States. Air Force (USAF, grant FA9550-08-1-0086)United States. Air Force Office of Scientific Research (AFOSR, Grant FA9550-08-1-0086

    Normal Modes and No Zero Mode Theorem of Scalar Fields in BTZ Black Hole Spacetime

    Full text link
    Eigenfunctions for normal modes of scalar fields in BTZ black hole spacetime are studied. Orthonormal relations among them are derived. Quantization for scalar fields is done and particle number, energy and angular momentum are expressed by the creation and annihilation operators. Allowed physical normal mode region is studied on the basis of the no zero mode theorem. Its implication to the statistical mechanics is also studied.Comment: 11 pages,v2 typos correcte

    Ultrafast optical nonlinearity in quasi-one-dimensional Mott-insulator Sr2CuO3{\rm Sr_2CuO_3}

    Full text link
    We report strong instantaneous photoinduced absorption (PA) in the quasi-one-dimensional Mott insulator Sr2CuO3{\rm Sr_2CuO_3} in the IR spectral region. The observed PA is to an even-parity two-photon state that occurs immediately above the absorption edge. Theoretical calculations based on a two-band extended Hubbard model explains the experimental features and indicates that the strong two-photon absorption is due to a very large dipole-coupling between nearly degenerate one- and two-photon states. Room temperature picosecond recovery of the optical transparency suggests the strong potential of Sr2CuO3{\rm Sr_2CuO_3} for all-optical switching.Comment: 10 pages, 4 figure

    Magnetic Properties of Enriched 195Pt Metals

    Get PDF
    金沢大学理工研究域数物科学系An enriched 195Pt system was investigated by magnetic and NMR measurements. Anomalous large magnetic moments are distinctly observed in enriched 195Pt wire samples produced by ORNL and in enriched thin-film samples. In the enriched powder and natural wire samples, weak anomalous large magnetic moments were also observed in magnetic measurements. These anomalous large magnetic moments were discussed by the induced giant magnetic moments of Fe impurity. The induced magnetic moments are different in wire samples and powder samples. © 2009 Springer Science+Business Media, LLC
    corecore