640 research outputs found

    Analysis of B and Be Star Populations of the Double Cluster h and chi Persei

    Full text link
    We present blue optical spectra of 92 members of h and chi Per obtained with the WIYN telescope at Kitt Peak National Observatory. From these spectra, several stellar parameters were measured for the B-type stars, including V sin i, T_eff, log g_polar, M_star, and R_star. Stromgren photometry was used to measure T_eff and log g_polar for the Be stars. We also analyze photometric data of cluster members and discuss the near-to-mid IR excesses of Be stars.Comment: 4 pages, to appear in the proceedings of IAU Symposium 266: Star Cluster

    A few things we do not know about stars and model atmospheres

    Get PDF
    We list a few things that we do not understand about stars and that most people ignore. These are all hard problems. We can learn more cosmology by working on them to reduce the systematic errors they introduce than by trying to derive cosmological results that are highly uncertain.Comment: 12 pages. Presented at the conference, The Link between Stars and Cosmology, 26-30 March, 2001, Puerto Vallarta, Mexico. To be published by Kluwer, eds. M. Chavez, A. Bressan, A. Buzzoni, and D. Mayy

    Testing common classical LTE and NLTE model atmosphere and line-formation codes for quantitative spectroscopy of early-type stars

    Full text link
    It is generally accepted that the atmospheres of cool/lukewarm stars of spectral types A and later are described well by LTE model atmospheres, while the O-type stars require a detailed treatment of NLTE effects. Here model atmosphere structures, spectral energy distributions and synthetic spectra computed with ATLAS9/SYNTHE and TLUSTY/SYNSPEC, and results from a hybrid method combining LTE atmospheres and NLTE line-formation with DETAIL/SURFACE are compared. Their ability to reproduce observations for effective temperatures between 15000 and 35000 K are verified. Strengths and weaknesses of the different approaches are identified. Recommendations are made as to how to improve the models in order to derive unbiased stellar parameters and chemical abundances in future applications, with special emphasis on Gaia science.Comment: 12 pages, 8 figures; accepted for publication in Journal of Physics: Conference Series, GREAT-ESF Workshop: Stellar Atmospheres in the Gaia Er

    Hot DQ White Dwarfs: Something Different

    Full text link
    We present a detailed analysis of all the known Hot DQ white dwarfs in the Fourth Data Release of the Sloan Digital Sky Survey (SDSS) recently found to have carbon dominated atmospheres. Our spectroscopic and photometric analysis reveals that these objects all have effective temperatures between ~18,000 and 24,000 K. The surface composition is found to be completely dominated by carbon, as revealed by the absence of Hbeta and HeI 4471 lines (or determination of trace amount in a few cases). We find that the surface gravity of all objects but one seems to be ''normal'' and around log g = 8.0 while one is likely near log g = 9.0. The presence of a weak magnetic field is directly detected by spectropolarimetry in one object and is suspected in two others. We propose that these strange stars could be cooled down versions of the weird PG1159 star H1504+65 and form a new family of hydrogen and helium deficient objects following the post-AGB phase. Finally, we present the results of full nonadiabatic calculations dedicated specifically to each of the Hot DQ that show that only SDSS J142625.70+575218.4 is expected to exhibit luminosity variations. This result is in excellent agreement with recent observations by Montgomery et al. who find that J142625.70+575218.4 is the only pulsator among 6 Hot DQ white dwarfs surveyed in February 2008.Comment: 33 pages, 7 figures, accepted for publication in Ap

    Relational lattices via duality

    Full text link
    The natural join and the inner union combine in different ways tables of a relational database. Tropashko [18] observed that these two operations are the meet and join in a class of lattices-called the relational lattices- and proposed lattice theory as an alternative algebraic approach to databases. Aiming at query optimization, Litak et al. [12] initiated the study of the equational theory of these lattices. We carry on with this project, making use of the duality theory developed in [16]. The contributions of this paper are as follows. Let A be a set of column's names and D be a set of cell values; we characterize the dual space of the relational lattice R(D, A) by means of a generalized ultrametric space, whose elements are the functions from A to D, with the P (A)-valued distance being the Hamming one but lifted to subsets of A. We use the dual space to present an equational axiomatization of these lattices that reflects the combinatorial properties of these generalized ultrametric spaces: symmetry and pairwise completeness. Finally, we argue that these equations correspond to combinatorial properties of the dual spaces of lattices, in a technical sense analogous of correspondence theory in modal logic. In particular, this leads to an exact characterization of the finite lattices satisfying these equations.Comment: Coalgebraic Methods in Computer Science 2016, Apr 2016, Eindhoven, Netherland

    Searching for the signatures of terrestial planets in solar analogs

    Full text link
    We present a fully differential chemical abundance analysis using very high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provide very accurate Galactic chemical evolution trends in the metalliciy range -0.3<[Fe/H]<0.5. Solar twins with and without planets show similar mean abundance ratios. We have also analysed a sub-sample of 28 solar analogs, 14 planet hosts and 14 stars without known planets, with spectra at S/N~850 on average, in the metallicity range 0.14<[Fe/H]<0.36 and find the same abundance pattern for both samples of stars with and without planets. This result does not depend on either the planet mass, from 7 Earth masses to 17.4 Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In addition, we have derived the slope of the abundance ratios as a function of the condensation temperature for each star and again find similar distributions of the slopes for both stars with and without planets. In particular, the peaks of these two distributions are placed at a similar value but with opposite sign as that expected from a possible signature of terrestial planets. In particular, two of the planetary systems in this sample, containing each of them a Super-Earth like planet, show slope values very close to these peaks which may suggest that these abundance patterns are not related to the presence of terrestial planets.Comment: Accepted for publication in The Astrophysical Journa

    Screened thermonuclear reactions and predictive stellar evolution of detached double-lined eclipsing binaries

    Full text link
    The low energy fusion cross sections of charged-particle nuclear reactions (and the respective reaction rates) in stellar plasmas are enhanced due to plasma screening effects. We study the impact of those effects on predictive stellar evolution simulations for detached double-lined eclipsing binaries. We follow the evolution of binary systems (pre-main sequence or main sequence stars) with precisely determined radii and masses from 1.1Mo to 23Mo (from their birth until their present state). The results indicate that all the discrepancies between the screened and unscreened models (in terms of luminosity, stellar radius, and effective temperature) are within the observational uncertainties. Moreover, no nucleosynthetic or compositional variation was found due to screening corrections. Therefore all thermonuclear screening effects on the charged-particle nuclear reactions that occur in the binary stars considered in this work (from their birth until their present state) can be totally disregarded. In other words, all relevant charged-particle nuclear reactions can be safely assumed to take place in a vacuum, thus simplifying and accelerating the simulation processes.Comment: 5 RevTex pages,no figures. Accepted for publication in Phys.Rev.

    Explanation of the activity sensitivity of Mn I 5394.7 \AA

    Full text link
    There is a long-standing controversy concerning the reason why the Mn I 5394.7 A line in the solar irradiance spectrum brightens more at larger activity than most other photospheric lines. The claim that this activity sensitivity is caused by spectral interlocking to chromospheric emission in Mg II h & k is disputed. Classical one-dimensional modeling is used for demonstration; modern three-dimensional MHD simulation for verification and analysis. The Mn I 5394.7 A line thanks its unusual sensitivity to solar activity to its hyperfine structure. This overrides the thermal and granular Doppler smearing through which the other, narrower, photospheric lines lose such sensitivity. We take the nearby Fe I 5395.2 A line as example of the latter and analyze the formation of both lines in detail to demonstrate and explain granular Doppler brightening. We show that this affects all narrow lines. Neither the chromosphere nor Mg II h & k play a role, nor is it correct to describe the activity sensitivity of Mn I 5394.7 A through plage models with outward increasing temperature contrast. The Mn I 5394.7 A line represents a proxy diagnostic of strong-field magnetic concentrations in the deep solar photosphere comparable to the G band and the blue wing of H-alpha, but not a better one than these. The Mn I lines are more promising as diagnostic of weak fields in high-resolution Stokes polarimetry.Comment: 12 pages, 8 figures, accepted by A&

    The Hot Inner Disk of FU Ori

    Full text link
    We have constructed a detailed radiative transfer disk model which reproduces the main features of the spectrum of the outbursting young stellar object FU Orionis from ~ 4000 angstrom, to ~ 8 micron. Using an estimated visual extinction Av~1.5, a steady disk model with a central star mass ~0.3 Msun and a mass accretion rate ~ 2e-4 Msun/yr, we can reproduce the spectral energy distribution of FU Ori quite well. With the mid-infrared spectrum obtained by the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, we estimate that the outer radius of the hot, rapidly accreting inner disk is ~ 1 AU using disk models truncated at this outer radius. Inclusion of radiation from a cooler irradiated outer disk might reduce the outer limit of the hot inner disk to ~ 0.5 AU. In either case, the radius is inconsistent with a pure thermal instability model for the outburst. Our radiative transfer model implies that the central disk temperature Tc > 1000 K out to ~ 0.5 - 1 AU, suggesting that the magnetorotational instability (MRI) can be supported out to that distance. Assuming that the ~ 100 yr decay timescale in brightness of FU Ori represents the viscous timescale of the hot inner disk, we estimate the viscosity parameter (alpha) to be ~ 0.2 - 0.02 in the outburst state, consistent with numerical simulations of MRI in disks. The radial extent of the high mass accretion region is inconsistent with the model of Bell & Lin, but may be consistent with theories incorporating both gravitational instability and MRI.Comment: 32 pages, 10 figures, to appear in the Astrophysical Journa

    DASCH Discovery of A Possible Nova-like Outburst in A Peculiar Symbiotic Binary

    Full text link
    We present photometric and spectroscopic observations of a peculiar variable (designated DASCH J075731.1+201735 or J0757) discovered from our DASCH project using the digitized Harvard College Observatory archival photographic plates. It brightened by about 1.5 magnitudes in B within a year starting in 1942, and then slowly faded back to its pre-outburst brightness from 1943 to the 1950s. The mean brightness level was stable before and after the outburst, and ellipsoidal variations with a period of P=119.18±0.07P=119.18\pm0.07 days are seen, suggesting that the star is tidally distorted. Radial-velocity measurements indicate that the orbit is nearly circular (e=0.02±0.01e=0.02\pm0.01) with a spectroscopic period that is the same as the photometric period. The binary consists of a 1.1±0.3M⊙1.1\pm0.3 M_\odot M0III star, and a 0.6±0.2M⊙0.6\pm0.2 M_\odot companion, very likely a white dwarf (WD). Unlike other symbiotic binaries, there is no sign of emission lines or a stellar wind in the spectra. With an outburst timescale of ~10 years and estimated B band peak luminosity M_B~0.7, J0757 is different from any other known classic or symbiotic novae. The most probable explanation of the outburst is Hydrogen shell-burning on the WD, although an accretion-powered flare cannot be ruled out.Comment: 12 pages, 6 figures, accepted for publication in Ap
    • 

    corecore