73 research outputs found
The transmission of Leishmania infantum chagasi by the bite of the Lutzomyia longipalpis to two different vertebrates
<p>Abstract</p> <p>Background</p> <p>Sandflies are vectors of <it>Leishmania</it>, the causative agent of leishmaniasis in mammalian hosts, including humans. The protozoan parasite is transmitted by the sandfly bite during salivation that occurs at the moment of blood feeding. The components of vector saliva include anticlotting and vasodilatory factors that facilitate blood flow and immunomodulatory factors that inhibit wound healing and quell the immune response. Not surprisingly, these factors also play important roles in the establishment of <it>Leishmania </it>infection. To date, the majority of knowledge that has been generated regarding the process of <it>Leishmania </it>infection, including <it>L. infantum chagasi </it>transmission has been gathered by using intradermal or subcutaneous inoculation of purified parasites.</p> <p>Findings</p> <p>This study presents the establishment of a transmission model of <it>Leishmania infantum chagasi </it>by the bite of <it>Lutzomyia longipalpis</it>, the vector of American visceral leishmaniasis. The parasites were successfully transmitted by infected sandfly bites to mice and hamsters, indicating that both animals are good experimental models. The <it>L. infantum chagasi </it>dose that was transmitted in each single bite ranged from 10 to 10, 000 parasites, but 75% of the sandflies transmitted less than 300 parasites.</p> <p>Conclusions</p> <p>The strategy for initiating infection by sandfly bite of experimental animals facilitates future investigations into the complex and dynamic mechanisms of visceral leishmaniasis. It is important to elucidate the transmission mechanism of vector bites. This model represents a useful tool to study <it>L. infantum chagasi </it>infection transmitted by the vector.</p
Vector Transmission of Leishmania Abrogates Vaccine-Induced Protective Immunity
Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is “leishmanization,” in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM)+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania
Detection and Identification of Old World Leishmania by High Resolution Melt Analysis
Protozoal parasites of the genus Leishmania are transmitted by sand fly bites to humans and animals. Three major forms of disease are caused by these parasites: cutaneous leishmaniasis, responsible for disfiguring skin wounds; mucocutaneous leishmaniasis, causing non-healing ulceration around the mouth and nose; and the potentially fatal visceral leishmaniasis, involving internal organs such as the spleen and liver. More than 2 million new human infections are caused annually by leishmaniasis globally, it is endemic in more than 88 countries and prevalent also as an imported disease in non-endemic regions due to travel and tourism. Most species of Leishmania that infect humans are zoonotic and transmitted from animal reservoir hosts. As various leishmanial parasites cause disease with similar symptoms, but require different therapeutic regimens and have dissimilar prognoses, reliable, sensitive and rapid diagnostic assays are needed. This study focuses on the five main species that cause leishmaniasis in the Old World. It presents a new assay for rapid detection, species identification and quantification of leishmanial parasites in clinical samples, reservoir hosts and sand flies. This technique could be especially valuable in regions where several leishmanial species exist, in non-endemic regions where infected patients require a rapid diagnosis, and for epidemiological host and vector studies leading to prevention programs
Infection Parameters in the Sand Fly Vector That Predict Transmission of Leishmania major
To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic “cutoff” value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite
Leishmania major Survival in Selective Phlebotomus papatasi Sand Fly Vector Requires a Specific SCG-Encoded Lipophosphoglycan Galactosylation Pattern
Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In “selective” sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the “selective” fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both ‘poly-scGal’ and ‘null-scGal’ lines survived poorly relative to PpapJ-sympatric L. major FV1 and other ‘mono-scGal’ lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing ‘null-scGal’-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a ‘PpapJ-optimal’ scGal-LPG PAMP. Unexpectedly, these “L. major FV1-cloaked” L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific ‘mono-scGal’ pattern. However, failure of ‘mono-scGal’ L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is “selective” or “permissive”, with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania
Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response
Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved
The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease
Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8x10(-4) (95%CI: [2.6; 11.0] x 10(-4)). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another
Natural transmission of Leishmania infantum through experimentally infected Phlebotomus perniciosus highlights the virulence of Leishmania parasites circulating in the human visceral leishmaniasis outbreak in Madrid, Spain
International audienceAbstractA human leishmaniasis outbreak is occurring in the Madrid region, Spain, with the parasite and vector involved being Leishmania infantum and Phlebotomus perniciosus respectively. The aim of this study was to investigate the virulence of L. infantum isolates from the focus using a natural transmission model. Hamsters were infected by intraperitoneal inoculation (IP) or by bites of sand flies experimentally infected with L. infantum isolates obtained from P. perniciosus collected in the outbreak area (IPER/ES/2012/BOS1FL1 and IPER/ES/2012/POL2FL6) and a well characterized L. infantum strain JPCM5 (MCAN/ES/98/LLM-877). Hamster infections were monitored by clinical examination, serology, culture, parasite burden, Giemsa-stained imprints, PCR, histopathology and xenodiagnostic studies. Establishment of infection of L. infantum was achieved with the JPCM5 strain and outbreak isolates by both P. perniciosus infective bites or IP route. However, high virulence of BOS1FL1 and POL2FL6 isolates was highlighted by the clinical outcome of disease, high parasite detection in spleen and liver, high parasitic loads and positivity of Leishmania serology. Transmission by bite of POL2FL6 infected flies generated a slower progression of clinical disease than IP infection, but both groups were infective to P. perniciosus by xenodiagnosis at 2 months post-infection. Conversely, hamsters inoculated with JPCM5 were not infective to sand flies. Histopathology studies confirmed the wide spread of POL2FL6 parasites to several organs. A visceral leishmaniasis model that mimics the natural transmission in nature allowed us to highlight the high virulence of isolates that are circulating in the focus. These findings contribute to a better understanding of the outbreak epidemiology
- …