176 research outputs found

    Methicillin resistance is not a predictor of severity in community-acquired Staphylococcus aureus necrotizing pneumonia—results of a prospective observational study

    Get PDF
    AbstractStaphylococcal necrotizing pneumonia (NP) is a severe disease associated with Panton–Valentine leucocidin (PVL). NP was initially described for methicillin-susceptible Staphylococcus aureus (MSSA) infection, but cases associated with methicillin-resistant S. aureus (MRSA) infection have increased concomitantly with the incidence of community-acquired MRSA worldwide. The role of methicillin resistance in the severity of NP remains controversial. The characteristics and outcomes of 133 patients with PVL-positive S. aureus community-acquired pneumonia (CAP) were compared according to methicillin resistance. Data from patients hospitalized for PVL-positive S. aureus CAP in France from 1986 to 2010 were reported to the National Reference Centre for Staphylococci and were included in the study. The primary end point was mortality. Multivariate logistic modelling and the Cox regression were used for subsequent analyses. We analysed 29 cases of PVL-MRSA and 104 cases of PVL-MSSA pneumonia. Airway haemorrhages were more frequently associated with PVL-MSSA pneumonia. However, no differences in the initial severity or the management were found between these two types of pneumonia. The rate of lethality was 39% regardless of methicillin resistance. By Cox regression analysis, methicillin resistance was not found to be a significant independent predictor of mortality at 7 or 30 days (p 0.65 and p 0.71, respectively). Our study demonstrates that methicillin resistance is not associated with the severity of staphylococcal necrotizing pneumonia

    Post coital aortic dissection: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sudden onset peri- or post-coital cardiovascular disease is well documented in the literature including myocardial infarction, pulmonary embolus and subarachnoid haemorrhage. The occurrence of aortic dissection in this setting has been reported only once previously.</p> <p>Case presentation</p> <p>We report the case of a 47 year old man who developed sudden onset right leg pain during coitus. This was initially believed to be neurological due to nerve impingement but an MRI failed to identify a prolapse. On further review after 6 weeks, pulses were noted to be absent in the patient's right leg and an urgent vascular review with investigation identified a dissection of the aorta which was subsequently successfully treated.</p> <p>Conclusion</p> <p>This case illustrates a rare presentation of aortic dissection and demonstrates the importance of a thorough vascular assessment in the presence of sudden onset limb pain.</p

    Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube

    Get PDF
    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared

    Boundary layer flow of nanofluid over an exponentially stretching surface

    Get PDF
    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt

    A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models

    Get PDF
    In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous media-based model has been investigated through several different numerical examples. First, we investigate model parameters that have a profound influence on the flow and pressure distributions of the system. The simulation results have been compared against the waveforms generated by three elements (RCR) Windkessel model. The proposed model is also integrated into a realistic arterial tree, and the results obtained have been compared against experimental data at different locations of the network. The accuracy and simplicity of the proposed model demonstrates that it can be an excellent alternative for the existing models
    corecore