20 research outputs found

    Specific Heat Study of an S=1/2 Alternating Heisenberg Chain System F_5PNN Under Magnetic Field

    Get PDF
    We have measured the specific heat of an S=1/2 antiferromagnetic alternating Heisenberg chain pentafulorophenyl nitronyl nitroxide under magnetic fields up to H>H_C2. This compound has the field-induced magnetic ordered (FIMO) phase between H_C1 and H_C2. Characteristic behaviors are observed depending on the magnetic field up to above H_C2 outside of the H-T boundary for the FIMO. Temperature and field dependence of the specific heat are qualitatively in good agreement with the theoretical calculation on an S=1/2 two-leg ladder. [Wang et al. Phys. Rev. Lett 84 5399 (2000)] This agreement suggests that the observed behaviors are related with the low-energy excitation in the Tomonaga-Luttinger liquid.Comment: 4pages, 4figures, replaced with revised version accepted to Physical Review Letter

    Unusual Low-Temperature Phase in VO2_2 Nanoparticles

    Full text link
    We present a systematic investigation of the crystal and electronic structure and the magnetic properties above and below the metal-insulator transition of ball-milled VO2_2 nanoparticles and VO2_2 microparticles. For this research, we performed a Rietveld analysis of synchrotron radiation x-ray diffraction data, O KK x-ray absorption spectroscopy, V L3L_3 resonant inelastic x-ray scattering, and magnetic susceptibility measurements. This study reveals an unusual low-temperature phase that involves the formation of an elongated and less-tilted V-V pair, a narrowed energy gap, and an induced paramagnetic contribution from the nanoparticles. We show that the change in the crystal structure is consistent with the change in the electronic states around the Fermi level, which leads us to suggest that the Peierls mechanism contributes to the energy splitting of the a1ga_{1g} state. Furthermore, we find that the high-temperature rutile structure of the nanoparticles is almost identical to that of the microparticles.Comment: 7 pages, 8 figures, 2 table

    Scalar potential effect in an integrable Kondo model

    Get PDF
    To study the impurity potential effect to the Kondo problem in a Luttinger liquid, we propose an integrable model of two interacting half-chains coupled with a single magnetic impurity ferromagnetically. It is shown that the scalar potential effectively reconciles the spin dynamics at low temperatures. Generally, there is a competition between the Kondo coupling JJ and the impurity potential VV. When the ferromagnetic Kondo coupling dominates over the impurity potential (V<SJV<|SJ|), the Furusaki-Nagaosa many-body singlet can be perfectly realized. However, when the impurity potential dominates over the Kondo coupling (VSJV\geq |SJ|), the fixed point predicted by Furusaki and Nagaosa is unstable and the system must flow to a weak coupling fixed point. It is also found that the effective moment of the impurity measured from the susceptibility is considerably enlarged by the impurity potential. In addition, some quantum phase transitions driven by the impurity potential are found and the anomaly residual entropy is discussed.Comment: volume enlarged, some new references are adde

    Ghost spins and novel quantum critical behavior in a spin chain with local bond-deformation

    Get PDF
    We study the boundary impurity-induced critical behavior in an integrable SU(2)-invariant model consisting of an open Heisenberg chain of arbitrary spin-SS (Takhatajian-Babujian model) interacting with an impurity of spin S\vec{S'} located at one of the boundaries. For S=1/2S=1/2 or S=1/2S'=1/2, the impurity interaction has a very simple form JS1SJ\vec{S}_1\cdot\vec{S'} which describes the deformed boundary bond between the impurity S\vec{S'} and the first bulk spin S1\vec{S}_1 with an arbitrary strength JJ. With a weak coupling 0<J<J0/[(S+S)21/4]0<J<J_0/[(S+S')^2-1/4], the impurity is completely compensated, undercompensated, and overcompensated for S=SS=S', S>SS>S' and S<SS<S' as in the usual Kondo problem. While for strong coupling JJ0/[(S+S)21/4]J\geq J_0/[(S+S')^2-1/4], the impurity spin is split into two ghost spins. Their cooperative effect leads to a variety of new critical behaviors with different values of SS|S'-S|.Comment: 16 pages revtex, no figur

    Characteristics of Eucalyptus Woods from Plantations in South Africa for Kraft Cooking

    No full text
    corecore