5 research outputs found
An object location memory paradigm for older adults with and without mild cognitive impairment
Background Object-location memory is critical in every-day life and known to deteriorate early in the course of neurodegenerative disease. New method We adapted the previously established learning paradigm “LOCATO” for use in healthy older adults and patients with mild cognitive impairment (MCI). Pictures of real-life buildings were associated with positions on a two-dimensional street map by repetitions of “correct” object-location pairings over the course of five training blocks, followed by a recall task. Correct/incorrect associations were indicated by button presses. The original two 45-item sets were reduced to 15 item-sets, and tested in healthy older adults and MCI for learning curve, recall, and re-test effects. Results The two 15-item versions showed comparable learning curves and recall scores within each group. While learning curves increased linearly in both groups, MCI patients performed significantly worse on learning and recall compared to healthy controls. Re-testing after 6 month showed small practice effects only. Comparison with existing methods LOCATO is a simple standardized task that overcomes several limitation of previously employed visuospatial task by using real-life stimuli, minimizing verbal encoding, avoiding fine motor responses, combining explicit and implicit statistical learning, and allowing to assess learning curve in addition to recall. Conclusions Results show that the shortened version of LOCATO meets the requirements for a robust and ecologically meaningful assessment of object-location memory in older adults with and without MCI. It can now be used to systematically assess acquisition of object-location memory and its modulation through adjuvant therapies like pharmacological or non-invasive brain stimulation
Impact of omega-3 fatty acid supplementation on memory functions in healthy older adults
As the process of Alzheimer’s disease (AD) begins years before disease onset, searching for prevention strategies is of major medical and economic importance. Nutritional supplementation with long-chain polyunsaturated omega-3 fatty acids (LC-n3-FA) may exert beneficial effects on brain structure and function. However, experimental evidence in older adults without clinical dementia is inconsistent, possibly due to low sensitivity of previously employed test batteries for detecting subtle improvements in cognition in healthy individuals. Here we used LOCATO, recently described as a robust and sensitive tool for assessing object-location memory (OLM) in older adults, to evaluate the impact of LC-n3-FA supplementation on learning and memory formation. In a double-blind placebo-controlled proof-of-concept study, 44 (20 female) cognitively healthy individuals aged 50–75 years received either LC-n3-FA (2,200 mg/day, n = 22) or placebo (n = 22) for 26 weeks. Before and after intervention, memory performance in the OLM-task (primary) was tested. As secondary outcome parameters, performance in Rey Auditory Verbal Learning Test (AVLT), dietary habits, omega-3-index, and other blood-derived parameters were assessed. Omega-3 index increased significantly in the LC-n3-FA group compared with the placebo group. Moreover, recall of object locations was significantly better after LC-n3-FA supplementation compared with placebo. Performance in the AVLT was not significantly affected by LC-n3-FA. This double-blind placebo-controlled proof-of-concept study provides further experimental evidence that LC-n3-FA exert positive effects on memory functions in healthy older adults. Our findings suggest novel strategies to maintain cognitive functions into old age
Relationship between excitability, plasticity and thickness of the motor cortex in older adults
The relationship between brain structure, cortical physiology, and learning ability in older adults is of particular interest in understanding mechanisms of age-related cognitive decline. Only a few studies addressed this issue so far, yielding mixed results. Here, we used comprehensive multiple regression analyses to investigate associations between brain structure on the one hand, i.e., cortical thickness (CT), fractional anisotropy (FA) of the pyramidal tract and individual coil-to-cortex distance, and cortical physiology on the other hand, i.e. motor cortex excitability and long-term potentiation (LTP)-like cortical plasticity, in healthy older adults (mean age 64 years, 14 women). Additional exploratory analyses assessed correlations between cortical physiology and learning ability in the verbal domain. In the regression models, we found that cortical excitability could be best predicted by CT of the hand knob of the primary motor cortex (CT-M1HAND) and individual coil-to-cortex distance, while LTP-like cortical plasticity was predicted by CT-M1HAND and FA of the pyramidal tract. Exploratory analyses revealed a significant inverse correlation between cortical excitability and learning ability. In conclusion, higher cortical excitability was associated with lower CT and lower learning ability in a cohort of healthy older adults, in line with previous reports of increased cortical excitability in patients with cortical atrophy and cognitive deficits due to Alzheimer's Disease. Cortical excitability may thus be a parameter to identify individuals at risk for cognitive decline and gray matter atrophy, a hypothesis to be explored in future longitudinal studies
Impact of COMT val158met on tDCS-induced cognitive enhancement in older adults
Background Previous studies suggest that genetic polymorphisms and aging modulate inter-individual variability in brain stimulation-induced plasticity. However, the relationship between genetic polymorphisms and behavioral modulation through transcranial direct current stimulation (tDCS) in older adults remains poorly understood. Objective Link individual tDCS responsiveness, operationalized as performance difference between tDCS and sham condition, to common genetic polymorphisms in healthy older adults. Methods 106 healthy older participants from five tDCS-studies were re-invited to donate blood for genotyping of apoliproprotein E (APOE: ε4 carriers and ε4 non-carriers), catechol-O-methyltransferase (COMT: val/val, val/met, met/met), brain-derived neurotrophic factor (BDNF: val/val, val/met, met/met) and KIdney/BRAin encoding gene (KIBRA: C/C, C/T, T/T). Studies had assessed cognitive performance during tDCS and sham in cross-over designs. We now asked whether the tDCS responsiveness was related to the four genotypes using a linear regression models. Results We found that tDCS responsiveness was significantly associated with COMT polymorphism; i.e., COMT val carriers (compared to met/met) showed higher tDCS responsiveness. No other significant associations emerged. Conclusion Using data from five brain stimulation studies conducted in our group, we showed that only individual variation of COMT genotypes modulated behavioral response to tDCS. These findings contribute to the understanding of inherent factors that explain inter-individual variability in functional tDCS effects in older adults, and might help to better stratify participants for future clinical trials