281 research outputs found
Negative thermal expansion in the plateau state of a magnetically-frustrated spinel
We report on negative thermal expansion (NTE) in the high-field,
half-magnetization plateau phase of the frustrated magnetic insulator CdCr2O4.
Using dilatometry, we precisely map the phase diagram at fields of up to 30T,
and identify a strong NTE associated with the collinear half-magnetization
plateau for B > 27T. The resulting phase diagram is compared with a microscopic
theory for spin-lattice coupling, and the origin of the NTE is identified as a
large negative change in magnetization with temperature, coming from a
nearly-localised band of spin excitations in the plateau phase. These results
provide useful guidelines for the discovery of new NTE materials.Comment: 6 pages, 2 figure
Thermodynamics of the coupled spin-dimer system TlCuCl3 close to a quantum phase transition
We present thermal expansion alpha, magnetostriction and specific heat C
measurements of \tal, which shows a quantum phase transition from a spin-gap
phase to a Neel-ordered ground state as a function of magnetic field around
H_{C0}->4.8T. Using Ehrenfest's relation, we find huge pressure dependencies of
the spin gap for uniaxial as well as for hydrostatic pressure. For T->0 and
H->H_{C0} we observe a diverging Grueneisen parameter Gamma(T)=alpha/C, in
qualitative agreement with theoretical predictions. However, the predicted
individual temperature dependencies alpha(T) and C(T) are not reproduced by our
experimental data.Comment: 6 pages including 7 figures, contribution to the III Joint European
Magnetic Symposia 2006, San Sebastia
Electrical resistivity ofYb(Rh1-xCox)2Si2 single crystals at low temperatures
We report low-temperature measurements of the electrical resistivity of
Yb(Rh1-xCox)2Si2 single crystals with 0 <= x <= 0.12. The isoelectronic
substitution of Co on the Rh site leads to a decrease of the unit cell volume
which stabilizes the antiferromagnetism. Consequently, the antiferromagnetic
transition temperature increases upon Co substitution. For x = 0.07 Co content
a subsequent low-temperature transition is observed in agreement with
susceptibility measurements and results on YbRh2Si2 under hydrostatic pressure.
Above the Neel transition the resistivity follows a non-Fermi liquid behavior
similar to that of YbRh2Si2.Comment: 4 pages, submitted to SCES0
Quantum Criticality in doped CePd_1-xRh_x Ferromagnet
CePd_1-xRh_x alloys exhibit a continuous evolution from ferromagnetism (T_C=
6.5 K) at x = 0 to a mixed valence (MV) state at x = 1. We have performed a
detailed investigation on the suppression of the ferromagnetic (F) phase in
this alloy using dc-(\chi_dc) and ac-susceptibility (\chi_ac), specific heat
(C_m), resistivity (\rho) and thermal expansion (\beta) techniques. Our results
show a continuous decrease of T_C (x) with negative curvature down to T_C = 3K
at x*= 0.65, where a positive curvature takes over. Beyond x*, a cusp in cac is
traced down to T_C* = 25 mK at x = 0.87, locating the critical concentration
between x = 0.87 and 0.90. The quantum criticality of this region is recognized
by the -log(T/T_0) dependence of C_m/T, which transforms into a T^-q (~0.5) one
at x = 0.87. At high temperature, this system shows the onset of valence
instability revealed by a deviation from Vegard's law (at x_V~0.75) and
increasing hybridization effects on high temperature \chi_dc and \rho.
Coincidentally, a Fermi liquid contribution to the specific heat arises from
the MV component, which becomes dominant at the CeRh limit. In contrast to
antiferromagnetic systems, no C_m/T flattening is observed for x > x_cr rather
the mentioned power law divergence, which coincides with a change of sign of
\beta. The coexistence of F and MV components and the sudden changes in the T
dependencies are discussed in the context of randomly distributed magnetic and
Kondo couplings.Comment: 11 pages, 11 figure
Divergence of the Grueneisen Ratio at Quantum Critical Points in Heavy Fermion Metals
We present low-temperature volume thermal expansion, , and specific
heat, , measurements on high-quality single crystals of CeNi2Ge2 and
YbRh2(SiGe) which are located very near to quantum
critical points. For both systems, shows a more singular temperature
dependence than , and thus the Grueneisen ratio
diverges as T --> 0. For CeNi2Ge2, our results are in accordance with the
spin-density wave (SDW) scenario for three-dimensional critical
spin-fluctuations. By contrast, the observed singularity in
YbRh2_{0.95}_{0.05}_2$ cannot be explained by the itinerant SDW
theory but is qualitatively consistent with a locally quantum critical picture.Comment: 11 pages, 4 figure
Quantum Criticality in Heavy Fermion Metals
Quantum criticality describes the collective fluctuations of matter
undergoing a second-order phase transition at zero temperature. Heavy fermion
metals have in recent years emerged as prototypical systems to study quantum
critical points. There have been considerable efforts, both experimental and
theoretical, which use these magnetic systems to address problems that are
central to the broad understanding of strongly correlated quantum matter. Here,
we summarize some of the basic issues, including i) the extent to which the
quantum criticality in heavy fermion metals goes beyond the standard theory of
order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum
critical regime, iii) the non-Fermi liquid phenomena that accompany quantum
criticality, and iv) the interplay between quantum criticality and
unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to
appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review
article, intended for general readers; the discussion part contains more
specialized topic
Transitions from small to large Fermi momenta in a one-dimensional Kondo lattice model
We study a one-dimensional system that consists of an electron gas coupled to
a spin-1/2 chain by Kondo interaction away from half-filling. We show that
zero-temperature transitions between phases with "small" and "large" Fermi
momenta can be continuous. Such a continuous but Fermi-momentum-changing
transition arises in the presence of spin anisotropy, from a Luttinger liquid
with a small Fermi momentum to a Kondo-dimer phase with a large Fermi momentum.
We have also added a frustrating next-nearest-neighbor interaction in the spin
chain to show the possibility of a similar Fermi-momentum-changing transition,
between the Kondo phase and a spin-Peierls phase, in the spin isotropic case.
This transition, however, appears to involve a region in which the two phases
coexist.Comment: The updated version clarifies the definitions of small and large
Fermi momenta, the role of anisotropy, and how Kondo interaction affects
Luttinger liquid phase. 12 pages, 5 figure
In vitro Efficacy of a Novel Guanosine-Analog Phosphonate
Actinic keratosis, a frequent carcinoma in situ of non-melanoma skin cancer
(NMSC), can transform into life-threatening cutaneous squamous cell carcinoma.
Current treatment is limited due to low complete clearance rates and asks for
novel therapeutic concepts; the novel purine nucleotide analogue OxBu may be
an option. In order to enhance skin penetration, solid lipid nanoparticles
(SLN, 136-156 nm) were produced with an OxBu entrapment efficiency of 96.5 ±
0.1%. For improved preclinical evaluation, we combined tissue engineering with
clinically used keratin-18 quantification. Three doses of 10-3 mol/l OxBu,
dissolved in phosphate-buffered saline as well as loaded to SLN, were
effective on reconstructed NMSC. Tumour response and apoptosis induction were
evaluated by an increase in caspase-cleaved fragment of keratin-18, caspase-7
activation as well as by reduced expression of matrix metallopeptidase-2 and
Ki-67. OxBu efficacy was superior to equimolar 5-fluorouracil solution, and
thus the drug should be subjected to the next step in preclinical evaluation
Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay
BACKGROUND: Congenital forms of hearing impairment can be caused by mutations in the estrogen related receptor beta (ESRRB) gene. Our initial linkage studies suggested the ESRRB locus is linked to high caries experience in humans.
METHODS: We tested for association between the ESRRB locus and dental caries in 1,731 subjects, if ESRRB was expressed in whole saliva, if ESRRB was associated with the microhardness of the dental enamel, and if ESRRB was expressed during enamel development of mice.
RESULTS: Two families with recessive ESRRB mutations and DFNB35 hearing impairment showed more extensive dental destruction by caries. Expression levels of ESRRB in whole saliva samples showed differences depending on sex and dental caries experience.
CONCLUSIONS: The common etiology of dental caries and hearing impairment provides a venue to assist in the identification of individuals at risk to either condition and provides options for the development of new caries prevention strategies, if the associated ESRRB genetic variants are correlated with efficacy.Fil: Weber, Megan L.. University of Pittsburgh; Estados UnidosFil: Hsin, Hong Yuan. University of Pittsburgh; Estados UnidosFil: Kalay, Ersan. Karadeniz Technical University; TurquíaFil: Brožková, Dana Š. Charles University; República Checa. University Hospital Motol; República ChecaFil: Shimizu, Takehiko. Nihon University. School of Dentistry; JapónFil: Bayram, Merve. Medipol Istanbul University; TurquíaFil: Deeley, Kathleen. University of Pittsburgh; Estados UnidosFil: Küchler, Erika C.. University of Pittsburgh; Estados UnidosFil: Forella, Jessalyn. University of Pittsburgh; Estados UnidosFil: Ruff, Timothy D.. University of Pittsburgh; Estados UnidosFil: Trombetta, Vanessa M.. University of Pittsburgh; Estados UnidosFil: Sencak, Regina C.. University of Pittsburgh; Estados UnidosFil: Hummel, Michael. University of Pittsburgh; Estados UnidosFil: Briseño Ruiz, Jessica. University of Pittsburgh; Estados UnidosFil: Revu, Shankar K.. University of Pittsburgh; Estados UnidosFil: Granjeiro, José M.. Universidade Federal Fluminense; BrasilFil: Antunes, Leonardo S.. Universidade Federal Fluminense; BrasilFil: Antunes, Livia A.. Universidade Federal Fluminense; BrasilFil: Abreu, Fernanda V.. Universidade Federal Fluminense; BrasilFil: Costabel, Marcelo C.. Universidade Federal do Rio de Janeiro; BrasilFil: Tannure, Patricia N.. Veiga de Almeida University; Brasil. Salgado de Oliveira University; BrasilFil: Koruyucu, Mine. Istanbul University; TurquíaFil: Patir, Asli. Medipol Istanbul University; TurquíaFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mereb, Juan C.. Estudio Colaborativo Latino Americano de Malformaciones Congénitas; ArgentinaFil: Castilla, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orioli, Iêda M.. Universidade Federal do Rio de Janeiro; BrasilFil: Marazita, Mary L.. University of Pittsburgh; Estados UnidosFil: Ouyang, Hongjiao. University of Pittsburgh; Estados UnidosFil: Jayaraman, Thottala. University of Pittsburgh; Estados UnidosFil: Seymen, Figen. Istanbul University; TurquíaFil: Vieira, Alexandre R.. University of Pittsburgh; Estados Unido
- …