846 research outputs found
Vibrationally Resolved Spectra from Short Time Quantum Molecular Dynamics by the Filter-Diagonalization Method
The possibility of calculating vibrationally resolved spectra from very short numerically exact and approximate quantum dynamical propagations using the new Filter-Diagonalization method is explored. The benchmark process under study concerns electron photodetachment in the I-Ar2 complex. Comparison with results obtained from long time propagations and with experiment reveals the power of the Filter-Diagonalization scheme. Using the new methodology it now becomes possible to extract positions of spectral peaks for large polyatomic systems from approximate quantum propagations e.g., by means of the recently developed Classical Separable Potential approach
Magnetoresistance and electronic structure of asymmetric GaAs/AlGaAs double quantum wells in the in-plane/tilted magnetic field
Bilayer two-dimensional electron systems formed by a thin barrier in the GaAs
buffer of a standard heterostructure were investigated by magnetotransport
measurements. In magnetic fields oriented parallel to the electron layers, the
magnetoresistance exhibits an oscillation associated with the depopulation of
the higher occupied subband and the field-induced transition into a decoupled
bilayer. Shubnikov-de Haas oscillations in slightly tilted magnetic fields
allow to reconstruct the evolution of the electron concentration in the
individual subbands as a function of the in-plane magnetic field. The
characteristics of the system derived experimentally are in quantitative
agreement with numerical self-consistent-field calculations of the electronic
structure.Comment: 6 pages, 5 figure
In-Plane Magnetic Field Induced Anisotropy of 2D Fermi Contours and the Field Dependent Cyclotron Mass
The electronic structure of a 2D gas subjected to a tilted magnetic field,
with a strong component parallel to the GaAs/AlGaAs interface and a weak
component oriented perpendicularly, is studied theoretically. It is shown that
the parallel field component modifies the originally circular shape of a Fermi
contour while the perpendicular component drive an electron by the Lorentz
force along a Fermi line with a cyclotron frequency given by its shape. The
corresponding cyclotron effective mass is calculated self-consistently for
several concentrations of 2D carriers as a function of the in-plane magnetic
field. The possibility to detect its field-induced deviations from the zero
field value experimentally is discussed.Comment: written in LaTeX, 9 pages, 4 figures (6 pages) in 1 PS file
(compressed and uuencoded) available on request from [email protected],
SM-JU-93-
Effect of inversion asymmetry on the intrinsic anomalous Hall effect in ferromagnetic (Ga,Mn)As
The relativistic nature of the electron motion underlies the intrinsic part
of the anomalous Hall effect, believed to dominate in ferromagnetic (Ga,Mn)As.
In this paper, we concentrate on the crystal band structure as an important
facet to the description of this phenomenon. Using different k.p and
tight-binding computational schemes, we capture the strong effect of the bulk
inversion asymmetry on the Berry curvature and the anomalous Hall conductivity.
At the same time, we find it not to affect other important characteristics of
(Ga,Mn)As, namely the Curie temperature and uniaxial anisotropy fields. Our
results extend the established theories of the anomalous Hall effect in
ferromagnetic semiconductors and shed new light on its puzzling nature
Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As
We report single-color, time resolved magneto-optical measurements in
ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control
of the magnetization precession by applying two successive ultrashort laser
pulses. The magnetic field and temperature dependent experiments reveal the
collective Mn-moment nature of the oscillatory part of the time-dependent Kerr
rotation, as well as contributions to the magneto-optical signal that are not
connected with the magnetization dynamics.Comment: 6 pages, 3 figures, accepted in Applied Physics Letter
Spins, charges and currents at Domain Walls in a Quantum Hall Ising Ferromagnet
We study spin textures in a quantum Hall Ising ferromagnet. Domain walls
between ferro and unpolarized states at are analyzed with a functional
theory supported by a microscopic calculation. In a neutral wall, Hartree
repulsion prevents the appearance of a fan phase provoked by a negative
stiffness. For a charged system, electrons become trapped as solitons at the
domain wall. The size and energy of the solitons are determined by both Hartree
and spin-orbit interactions. Finally, we discuss how electrical transport takes
place through the domain wall.Comment: 4 pages, 3 figures include
Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors
We present a realistic study for electronic and magnetic properties in dilute
magnetic semiconductor (Ga,Mn)As. A multi-orbital Haldane-Anderson model
parameterized by density-functional calculations is presented and solved with
the Hirsch-Fye quantum Monte Carlo algorithm. Results well reproduce
experimental results in the dilute limit. When the chemical potential is
located between the top of the valence band and an impurity bound state, a
long-range ferromagnetic correlations between the impurities, mediated by
antiferromagnetic impurity-host couplings, are drastically developed. We
observe an anisotropic character in local density of states at the
impurity-bound-state energy, which is consistent with the STM measurements. The
presented combined approach thus offers a firm starting point for realistic
calculations of the various family of dilute magnetic semiconductors.Comment: 5 pages, 4 figure
- ā¦