441 research outputs found

    Dielectric behavior of Copper Tantalum Oxide

    Full text link
    A thorough investigation of the dielectric properties of Cu2Ta4O12, a material crystallizing in a pseudo-cubic, perovskite-derived structure is presented. We measured the dielectric constant and conductivity of single crystals in an exceptionally broad frequency range up to GHz frequencies and at temperatures from 25 - 500 K. The detected dielectric constant is unusually high (reaching values up to 105) and almost constant in a broad frequency and temperature range. Cu2Ta4O12 possesses a crystal structure similar to CaCu3Ti4O12, the compound for which such an unusually high dielectric constant was first observed. An analysis of the results using a simple equivalent circuit and measurements with different types of contact revealed that extrinsic interfacial polarization effects, derived from surface barrier capacitors are the origin of the observed giant dielectric constants. The intrinsic properties of Cu2Ta4O12 are characterized by a (still relatively high) dielectric constant in the order of 100 and by charge transport via hopping conduction of Anderson-localized charge carriers.Comment: 18 pages, 6 figures, submitted to Jouranl of Physical Chemestr

    Evidence for power-law frequency dependence of intrinsic dielectric response in the CaCu3_{3}Ti4_{4}O12_{12}

    Full text link
    We investigated the dielectric response of CaCu3_3Ti4_4O12_{12} (CCTO) thin films grown epitaxially on LaAlO3_3 (001) substrates by Pulsed Laser Deposition (PLD). The dielectric response of the films was found to be strongly dominated by a power-law in frequency, typical of materials with localized hopping charge carriers, in contrast to the Debye-like response of the bulk material. The film conductivity decreases with annealing in oxygen, and it suggests that oxygen deficit is a cause of the relatively high film conductivity. With increase of the oxygen content, the room temperature frequency response of the CCTO thin films changes from the response indicating the presence of some relatively low conducting capacitive layers to purely power law, and then towards frequency independent response with a relative dielectric constant ϵ′∼102\epsilon'\sim10^2. The film conductance and dielectric response decrease upon decrease of the temperature with dielectric response being dominated by the power law frequency dependence. Below ∼\sim80 K, the dielectric response of the films is frequency independent with ϵ′\epsilon' close to 10210^2. The results provide another piece of evidence for an extrinsic, Maxwell-Wagner type, origin of the colossal dielectric response of the bulk CCTO material, connected with electrical inhomogeneity of the bulk material.Comment: v4: RevTeX, two-column, 9 pages, 7 figures; title modified, minor content change in p.7, reference adde

    Terahertz Conductivity at the Verwey Transition in Magnetite

    Get PDF
    The complex conductivity at the (Verwey) metal-insulator transition in Fe_3O_4 has been investigated at THz and infrared frequencies. In the insulating state, both the dynamic conductivity and the dielectric constant reveal a power-law frequency dependence, the characteristic feature of hopping conduction of localized charge carriers. The hopping process is limited to low frequencies only, and a cutoff frequency nu_1 ~ 8 meV must be introduced for a self-consistent description. On heating through the Verwey transition the low-frequency dielectric constant abruptly decreases and becomes negative. Together with the conductivity spectra this indicates a formation of a narrow Drude-peak with a characteristic scattering rate of about 5 meV containing only a small fraction of the available charge carriers. The spectra can be explained assuming the transformation of the spectral weight from the hopping process to the free-carrier conductivity. These results support an interpretation of Verwey transition in magnetite as an insulator-semiconductor transition with structure-induced changes in activation energy.Comment: 6 Pages, 3 Figure

    Polaron relaxation and hopping conductivity in LaMn1−x_{1-x}Fex_{x}O3_3

    Full text link
    Dc and ac transport properties as well as electric modulus spectra have been investigated for the samples LaMn1−x_{1-x}Fex_{x}O3_3 with compositions 0 ≤x≤\leq x \leq 1.0. The bulk dc resistivity shows a temperature variation consistent with the variable range hopping mechanism at low temperature and Arrhenius mechanism at high temperatures. The ac conductivity has been found to follow a power law behavior at a limited temperature and frequency region where Anderson-localization plays a significant role in the transport mechanism for all the compositions. At low temperatures large dc resistivities and dielectric relaxation behavior for all the compositions are consistent with the polaronic nature of the charge carriers. Scaling of the modulus spectra shows that the charge transport dynamics is independent of temperature for a particular composition but depends strongly on different compositions possibly due to different charge carrier concentrations and structural properties.Comment: 9 figure

    Scaling of THz-conductivity at metal-insulator transition in doped manganites

    Full text link
    Magnetic field and temperature dependence of the Terahertz conductivity and permittivity of the colossal magnetoresistance manganite Pr_{0.65}Ca_{0.28}Sr_{0.07}MnO_3 (PCSMO) is investigated approaching the metal-to-insulator transition (MIT) from the insulating side. In the charge-ordered state of PCSMO both conductivity and dielectric permittivity increase as function of magnetic field and temperature. Universal scaling relationships between the changes in permittivity and conductivity are observed in a broad range of temperatures and magnetic fields. Similar scaling is also seen in La_{1-x}Sr_xMnO_3 for different doping levels. The observed proportionality points towards the importance of pure ac-conductivity and phononic energy scale at MIT in manganites.Comment: 5 pages, 4 figure

    Colossal magnetocapacitance and scale-invariant dielectric response in phase-separated manganites

    Full text link
    Thin films of strongly-correlated electron materials (SCEM) are often grown epitaxially on planar substrates and typically have anisotropic properties that are usually not captured by edge-mounted four-terminal electrical measurements, which are primarily sensitive to in-plane conduction paths. Accordingly, the correlated interactions in the out-of-plane (perpendicular) direction cannot be measured but only inferred. We address this shortcoming and show here an experimental technique in which the SCEM under study, in our case a 600 Angstrom-thick (La1-yPry)0.67Ca0.33MnO3 (LPCMO) film, serves as the base electrode in a metal-insulator-metal (MIM) trilayer capacitor structure. This unconventional arrangement allows for simultaneous determination of colossal magnetoresistance (CMR) associated with dc transport parallel to the film substrate and colossal magnetocapacitance (CMC) associated with ac transport in the perpendicular direction. We distinguish two distinct strain-related direction-dependent insulator-metal (IM) transitions and use Cole-Cole plots to establish a heretofore unobserved collapse of the dielectric response onto a universal scale-invariant power-law dependence over a large range of frequency, temperature and magnetic field.Comment: 32 pages, 4 figures, Supplementary section included, Submitted to Nature Physic

    Extracting spectral density function of a binary composite without a-priori assumption

    Full text link
    The spectral representation separates the contributions of geometrical arrangement (topology) and intrinsic constituent properties in a composite. The aim of paper is to present a numerical algorithm based on the Monte Carlo integration and contrainted-least-squares methods to resolve the spectral density function for a given system. The numerical method is verified by comparing the results with those of Maxwell-Garnett effective permittivity expression. Later, it is applied to a well-studied rock-and-brine system to instruct its utility. The presented method yields significant microstructural information in improving our understanding how microstructure influences the macroscopic behaviour of composites without any intricate mathematics.Comment: 4 pages, 5 figures and 1 tabl

    Relaxation dynamics and ionic conductivity in a fragile plastic crystal

    Full text link
    We report a thorough characterization of the dielectric relaxation behavior and the ionic conductivity in the plastic-crystalline mixture of 60% succinonitrile and 40% glutaronitrile. The plastic phase can be easily supercooled and the relaxational behavior is investigated by broadband dielectric spectroscopy in the liquid, plastic crystalline, and glassy crystal phases. The very pronounced alpha-relaxation found in the spectra is characterized in detail. From the temperature dependence of the alpha-relaxation time, a fragility parameter of 62 was determined making this material one of the most fragile plastic-crystalline glass formers. A well-pronounced secondary and faint indications for a third relaxation process were found, the latter most likely being of Johari-Goldstein type. In addition, relatively strong conductivity contributions were detected in the spectra exhibiting the typical features of ionic charge transport.Comment: 8 pages, 7 figure

    Signs of low frequency dispersions in disordered binary dielectric mixtures (50-50)

    Full text link
    Dielectric relaxation in disordered dielectric mixtures are presented by emphasizing the interfacial polarization. The obtained results coincide with and cause confusion with those of the low frequency dispersion behavior. The considered systems are composed of two phases on two-dimensional square and triangular topological networks. We use the finite element method to calculate the effective dielectric permittivities of randomly generated structures. The dielectric relaxation phenomena together with the dielectric permittivity values at constant frequencies are investigated, and significant differences of the square and triangular topologies are observed. The frequency dependent properties of some of the generated structures are examined. We conclude that the topological disorder may lead to the normal or anomalous low frequency dispersion if the electrical properties of the phases are chosen properly, such that for ``slightly'' {\em reciprocal mixture}--when σ1≫σ2\sigma_1\gg\sigma_2, and ϵ1<ϵ2\epsilon_1<\epsilon_2--normal, and while for ``extreme'' {\em reciprocal mixture}--when σ1≫σ2\sigma_1\gg\sigma_2, and ϵ1≪ϵ2\epsilon_1\ll\epsilon_2--anomalous low frequency dispersions are obtained. Finally, comparison with experimental data indicates that one can obtain valuable information from simulations when the material properties of the constituents are not available and of importance.Comment: 13 pages, 7 figure

    Origin of Low-Energy Excitations in Charge-Ordered Manganites

    Full text link
    The low-energy excitations in the charge-ordered phase of polycrystalline La0.25Ca0.75MnO3 are explored by frequency-domain terahertz spectroscopy. In the frequency range from 4 cm^-1 to 700 cm^-1 (energies 0.4 meV to 90 meV) and at temperatures down to 5 K, we do not detect any feature that can be associated with the collective response of the spatially modulated charge continuum. In the antiferromagnetically ordered phase, broad absorption bands appear in the conductivity and permittivity spectra around 30 cm^-1 and 100 cm^-1 which are assigned to former acoustic phonons optically activated due to a fourfold superstructure in the crystal lattice. Our results indicate that characteristic energies of collective excitations of the charge-ordered phase in La0:25Ca0:75MnO3, if any, lie below 1 meV. At our lowest frequencies of only few wavenumbers a strong relaxation is observed above 100 K connected to the formation of the charge-ordered state.Comment: 5 pages, 3 figure
    • …
    corecore