575 research outputs found

    Electronic spin drift in graphene field effect transistors

    Get PDF
    We studied the drift of electron spins under an applied DC electric field in single layer graphene spin valves in a field effect transport geometry at room temperature. In the metallic conduction regime (n≃3.5×1016n \simeq 3.5 \times 10^{16} m−2^{-2}), for DC fields of about ±\pm70 kV/m applied between the spin injector and spin detector, the spin valve signals are increased/decreased, depending on the direction of the DC field and the carrier type, by as much as ±\pm50%. Sign reversal of the drift effect is observed when switching from hole to electron conduction. In the vicinity of the Dirac neutrality point the drift effect is strongly suppressed. The experiments are in quantitative agreement with a drift-diffusion model of spin transport.Comment: 4 figure

    Controlling the efficiency of spin injection into graphene by carrier drift

    Get PDF
    Electrical spin injection from ferromagnetic metals into graphene is hindered by the impedance mismatch between the two materials. This problem can be reduced by the introduction of a thin tunnel barrier at the interface. We present room temperature non-local spin valve measurements in cobalt/aluminum-oxide/graphene structures with an injection efficiency as high as 25%, where electrical contact is achieved through relatively transparent pinholes in the oxide. This value is further enhanced to 43% by applying a DC current bias on the injector electrodes, that causes carrier drift away from the contact. A reverse bias reduces the AC spin valve signal to zero or negative values. We introduce a model that quantitatively predicts the behavior of the spin accumulation in the graphene under such circumstances, showing a good agreement with our measurements.Comment: 4 pages, 3 color figure

    Large yield production of high mobility freely suspended graphene electronic devices on a PMGI based organic polymer

    Get PDF
    The recent observation of fractional quantum Hall effect in high mobility suspended graphene devices introduced a new direction in graphene physics, the field of electron-electron interaction dynamics. However, the technique used currently for the fabrication of such high mobility devices has several drawbacks. The most important is that the contact materials available for electronic devices are limited to only a few metals (Au, Pd, Pt, Cr and Nb) since only those are not attacked by the reactive acid (BHF) etching fabrication step. Here we show a new technique which leads to mechanically stable suspended high mobility graphene devices which is compatible with almost any type of contact material. The graphene devices prepared on a polydimethylglutarimide based organic resist show mobilities as high as 600.000 cm^2/Vs at an electron carrier density n = 5.0 10^9 cm^-2 at 77K. This technique paves the way towards complex suspended graphene based spintronic, superconducting and other types of devices.Comment: 14 pages, 4 figure

    Electronic spin transport in graphene field effect transistors

    Get PDF
    Spin transport experiments in graphene, a single layer of carbon atoms, indicate spin relaxation times that are significantly shorter than the theoretical predictions. We investigate experimentally whether these short spin relaxation times are due to extrinsic factors, such as spin relaxation caused by low impedance contacts, enhanced spin flip processes at the device edges or the presence of an aluminium oxide layer on top of graphene in some samples. Lateral spin valve devices using a field effect transistor geometry allowed for the investigation of the spin relaxation as a function of the charge density, going continuously from metallic hole to electron conduction (charge densities of n∼1012n\sim 10^{12}cm−2^{-2}) via the Dirac charge neutrality point (n∼0n \sim 0). The results are quantitatively described by a one dimensional spin diffusion model where the spin relaxation via the contacts is taken into account. Spin valve experiments for various injector/detector separations and spin precession experiments reveal that the longitudinal (T1_1) and the transversal (T2_2) relaxation times are similar. The anisotropy of the spin relaxation times τ∥\tau_\parallel and τ⊥\tau_\perp, when the spins are injected parallel or perpendicular to the graphene plane, indicates that the effective spin orbit fields do not lie exclusively in the two dimensional graphene plane. Furthermore, the proportionality between the spin relaxation time and the momentum relaxation time indicates that the spin relaxation mechanism is of the Elliott-Yafet type. For carrier mobilities of 2-5×103\times 10^3 cm2^/Vs and for graphene flakes of 0.1-2 μ\mum in width, we found spin relaxation times of the order of 50-200 ps, times which appear not to be determined by the extrinsic factors mentioned above.Comment: 11 pages, 13 figure
    • …
    corecore