78,250 research outputs found
Comparison of simple mass estimators for slowly rotating elliptical galaxies
We compare the performance of mass estimators for elliptical galaxies that
rely on the directly observable surface brightness and velocity dispersion
profiles, without invoking computationally expensive detailed modeling. These
methods recover the mass at a specific radius where the mass estimate is
expected to be least sensitive to the anisotropy of stellar orbits. One method
(Wolf et al. 2010) uses the total luminosity-weighted velocity dispersion and
evaluates the mass at a 3D half-light radius , i.e., it depends on the
GLOBAL galaxy properties. Another approach (Churazov et al. 2010) estimates the
mass from the velocity dispersion at a radius where the surface
brightness declines as , i.e., it depends on the LOCAL properties. We
evaluate the accuracy of the two methods for analytical models, simulated
galaxies and real elliptical galaxies that have already been modeled by the
Schwarzschild's orbit-superposition technique. Both estimators recover an
almost unbiased circular speed estimate with a modest RMS scatter (). Tests on analytical models and simulated galaxies indicate that the local
estimator has a smaller RMS scatter than the global one. We show by examination
of simulated galaxies that the projected velocity dispersion at could
serve as a good proxy for the virial galaxy mass. For simulated galaxies the
total halo mass scales with as with RMS scatter
.Comment: 19 pages, 14 figures, 4 tables, accepted for publication in MNRA
Anomalous elasticity in a disordered layered XY model
We investigate the effects of layered quenched disorder on the behavior of
planar magnets, superfluids, and superconductors by performing large-scale
Monte-Carlo simulations of a three-dimensional randomly layered XY model. Our
data provide numerical evidence for the recently predicted anomalously elastic
(sliding) intermediate phase between the conventional high-temperature and
low-temperature phases. In this intermediate phase, the spin-wave stiffness
perpendicular to the layers vanishes in the thermodynamic limit while the
stiffness parallel to the layers as well as the spontaneous magnetization are
nonzero. In addition, the susceptibility displays unconventional finite-size
scaling properties. We compare our Monte-Carlo results with the theoretical
predictions, and we discuss possible experiments in ultracold atomic gases,
layered superconductors and in nanostructures.Comment: 6 pages, 4 eps figures included, proceedings of FQMT11, final version
as publishe
Nuclei embedded in an electron gas
The properties of nuclei embedded in an electron gas are studied within the
relativistic mean-field approach. These studies are relevant for nuclear
properties in astrophysical environments such as neutron-star crusts and
supernova explosions. The electron gas is treated as a constant background in
the Wigner-Seitz cell approximation. We investigate the stability of nuclei
with respect to alpha and beta decay. Furthermore, the influence of the
electronic background on spontaneous fission of heavy and superheavy nuclei is
analyzed. We find that the presence of the electrons leads to stabilizing
effects for both decay and spontaneous fission for high electron
densities. Furthermore, the screening effect shifts the proton dripline to more
proton-rich nuclei, and the stability line with respect to beta decay is
shifted to more neutron-rich nuclei. Implications for the creation and survival
of very heavy nuclear systems are discussed.Comment: 35 pages, latex+ep
A controlled experiment for the empirical evaluation of safety analysis techniques for safety-critical software
Context: Today's safety critical systems are increasingly reliant on
software. Software becomes responsible for most of the critical functions of
systems. Many different safety analysis techniques have been developed to
identify hazards of systems. FTA and FMEA are most commonly used by safety
analysts. Recently, STPA has been proposed with the goal to better cope with
complex systems including software. Objective: This research aimed at comparing
quantitatively these three safety analysis techniques with regard to their
effectiveness, applicability, understandability, ease of use and efficiency in
identifying software safety requirements at the system level. Method: We
conducted a controlled experiment with 21 master and bachelor students applying
these three techniques to three safety-critical systems: train door control,
anti-lock braking and traffic collision and avoidance. Results: The results
showed that there is no statistically significant difference between these
techniques in terms of applicability, understandability and ease of use, but a
significant difference in terms of effectiveness and efficiency is obtained.
Conclusion: We conclude that STPA seems to be an effective method to identify
software safety requirements at the system level. In particular, STPA addresses
more different software safety requirements than the traditional techniques FTA
and FMEA, but STPA needs more time to carry out by safety analysts with little
or no prior experience.Comment: 10 pages, 1 figure in Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering (EASE '15).
ACM, 201
Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations
We have carried out an extensive survey of magnetic field strengths toward
dark cloud cores in order to test models of star formation: ambipolar-diffusion
driven or turbulence driven. The survey involved hours of observing
with the Arecibo telescope in order to make sensitive OH Zeeman observations
toward 34 dark cloud cores. Nine new probable detections were achieved at the
2.5-sigma level; the certainty of the detections varies from solid to marginal,
so we discuss each probable detection separately. However, our analysis
includes all the measurements and does not depend on whether each position has
a detection or just a sensitive measurement. Rather, the analysis establishes
mean (or median) values over the set of observed cores for relevant
astrophysical quantities. The results are that the mass-to-flux ratio is
supercritical by , and that the ratio of turbulent to magnetic energies
is also . These results are compatible with both models of star
formation. However, these OH Zeeman observations do establish for the first
time on a statistically sound basis the energetic importance of magnetic fields
in dark cloud cores at densities of order cm, and they lay
the foundation for further observations that could provide a more definitive
test.Comment: 22 pages, 2 figures, 2 table
Predicting Big Bang Deuterium
We present new upper and lower bounds to the primordial abundances of
deuterium and helium-3 based on observational data from the solar system and
the interstellar medium. Independent of any model for the primordial production
of the elements we find (at the 95\% C.L.): and . When combined with
the predictions of standard big bang nucleosynthesis, these constraints lead to
a 95\% C.L. bound on the primordial abundance of deuterium: . Measurements of deuterium absorption in the
spectra of high redshift QSOs will directly test this prediction. The
implications of this prediction for the primordial abundances of helium-4 and
lithium-7 are discussed, as well as those for the universal density of baryons.Comment: Revised version of paper to reflect comments of the referee and reply
to suggestions of Copi, Schramm, and Turner regarding the overall analysis
and treatment of chemical evolution of D and He-3. Best-fit D/H abundance
changes from (2.3 + 3.0 - 1.0)x10^{-5} to (3.5 +2.7 - 1.8) x10^{-5}. See also
hep-ph/950531
Noncyclic and nonadiabatic geometric phase for counting statistics
We propose a general framework of the geometric-phase interpretation for
counting statistics. Counting statistics is a scheme to count the number of
specific transitions in a stochastic process. The cumulant generating function
for the counting statistics can be interpreted as a `phase', and it is
generally divided into two parts: the dynamical phase and a remaining one. It
has already been shown that for cyclic evolution the remaining phase
corresponds to a geometric phase, such as the Berry phase or Aharonov-Anandan
phase. We here show that the remaining phase also has an interpretation as a
geometric phase even in noncyclic and nonadiabatic evolution.Comment: 12 pages, 1 figur
Flexible hidden Markov models for behaviour-dependent habitat selection
Background There is strong incentive to model behaviour-dependent habitat selection, as this can help delineate critical habitats for important life processes and reduce bias in model parameters. For this purpose, a two-stage modelling approach is often taken: (i) classify behaviours with a hidden Markov model (HMM), and (ii) fit a step selection function (SSF) to each subset of data. However, this approach does not properly account for the uncertainty in behavioural classification, nor does it allow states to depend on habitat selection. An alternative approach is to estimate both state switching and habitat selection in a single, integrated model called an HMM-SSF. Methods We build on this recent methodological work to make the HMM-SSF approach more efficient and general. We focus on writing the model as an HMM where the observation process is defined by an SSF, such that well-known inferential methods for HMMs can be used directly for parameter estimation and state classification. We extend the model to include covariates on the HMM transition probabilities, allowing for inferences into the temporal and individual-specific drivers of state switching. We demonstrate the method through an illustrative example of plains zebra (Equus quagga), including state estimation, and simulations to estimate a utilisation distribution. Results In the zebra analysis, we identified two behavioural states, with clearly distinct patterns of movement and habitat selection (“encamped” and “exploratory”). In particular, although the zebra tended to prefer areas higher in grassland across both behavioural states, this selection was much stronger in the fast, directed exploratory state. We also found a clear diel cycle in behaviour, which indicated that zebras were more likely to be exploring in the morning and encamped in the evening. Conclusions This method can be used to analyse behaviour-specific habitat selection in a wide range of species and systems. A large suite of statistical extensions and tools developed for HMMs and SSFs can be applied directly to this integrated model, making it a very versatile framework to jointly learn about animal behaviour, habitat selection, and space use.Publisher PDFPeer reviewe
Effective free energy for pinned membranes
We consider membranes adhered through specific receptor-ligand bonds. Thermal
undulations of the membrane induce effective interactions between adhesion
sites. We derive an upper bound to the free energy that is independent of
interaction details. To lowest order in a systematic expansion we obtain
two-body interactions which allow to map the free energy onto a lattice gas
with constant density. The induced interactions alone are not strong enough to
lead to a condensation of individual adhesion sites. A measure of the thermal
roughness is shown to depend on the inverse square root of the density of
adhesion sites, which is in good agreement with previous computer simulations.Comment: to appear as a Rapid Communication in Phys. Rev.
Evidence for shape coexistence in Mo
A angular correlation experiment has been performed to
investigate the low-energy states of the nucleus Mo. The new data,
including spin assignments, multipole mixing ratios and lifetimes reveal
evidence for shape coexistence and mixing in Mo, arising from a proton
intruder configuration. This result is reproduced by a theoretical calculation
within the proton-neutron interacting boson model with configuration mixing,
based on microscopic energy density functional theory. The microscopic
calculation indicates the importance of the proton particle-hole excitation
across the Z=40 sub-shell closure and the subsequent mixing between spherical
vibrational and the -soft equilibrium shapes in Mo.Comment: 6 pages, 5 figures, 3 tables; published in Phys. Rev.
- …