45 research outputs found

    Reproductive behavior in maize-Tripsacum polyhaploid plants : implications for the transfer of apomixis into maize

    Get PDF
    L'expression de l'apomixie gamétophytique chez les graminées est limitée aux formes polyploïdes. Au cours de notre programme de transfert de l'apomixie de #Tripsacum$ tétraploïdes diplosporiques (2n = 4x = 72) au maïs (2n = 20) par rétrocroisements conventionnels, nous avons produit des polyhaploïdes qui combinent un jeu de chromosomes de chaque genre. Ces plantes polyhaploïdes sont totalement mâles stériles, mais des graines viables furent produites par apomixie après pollinisation par le maïs. La reproduction par apomixie chez ces polyhaploïdes, qui ont une structure génomique de type diploïde, suggère que l'apomixie diplosporique et la polyploïdie ne sont pas complètement liées. Des espèces cultivées diploïdes, comme le maïs, pourraient être adaptées à la reproduction par apomixie. (Résumé d'auteur

    Loblolly Pine Karyotype Using FISH and DAPI Positive Banding

    Get PDF
    A loblolly pine (Pinus taeda L.) karyotype has been developed based on fluorescent insitu hybridization (FISH) using cyto-molecular landmarks including plant telomere repeat, 18S-28S rDNA and 5S rDNA probes and DAPI positive bands. Somatic chromosome spreads of loblolly pine root tips were prepared using a modified enzymatic digestion technique. We observed ten pairs of long metacentric, one pair of long submetacentric and one pair of short sub-metacentric chromosomes. All the chromosomes showed characteristic DAPI positive bands (A-T rich regions) near and/or around the centromeres. At least one DAPI positive band was also observed in intercalary positions on all chromosome arms. Plant telomere FISH signals were observed towards the end of each chromosomal arm as expected. In addition, most of the chromosomes showed telomeric sites near and/or around the centromeres except for one or possibly two chromosomes. A total of seventeen 18S-28S rDNA sites were identified per haploid genome. Eight of these were located near and/or around the centromeres and seven were at intercalary positions. One major 5S rDNA site was observed in an intercalary region of a metacentric chromosome that lacked 18S-28S rDNA sites. One or possibly two minor 5S rDNA sites were observed near the ends of two different chromosomes. We are also developing a slash pine karyotype for direct comparison with loblolly as well as a comparison with a previously published slash karyotype (Doudrick et al. 1995, Journal of Heredity 86:289-296). Finally, we will provide an update on our progress toward using BAC clones as FISH probes on pine chromosomes.Papers and abstracts from the 27th Southern Forest Tree Improvement Conference held at Oklahoma State University in Stillwater, Oklahoma on June 24-27, 2003

    Evolution of Genome Size and Complexity in Pinus

    Get PDF
    BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes

    Protective and Enhancing HLA Alleles, HLA-DRB1*0901 and HLA-A*24, for Severe Forms of Dengue Virus Infection, Dengue Hemorrhagic Fever and Dengue Shock Syndrome

    Get PDF
    Dengue has become one of the most common viral diseases transmitted by infected mosquitoes (with any of the four dengue virus serotypes: DEN-1, -2, -3, or -4). It may present as asymptomatic or illness, ranging from mild to severe disease. Recently, the severe forms, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), have become the leading cause of death among children in Southern Vietnam. The pathogenesis of DHF/DSS, however, is not yet completely understood. The immune response, virus virulence, and host genetic background are considered to be risk factors contributing to disease severity. Human leucocyte antigens (HLA) expressed on the cell surface function as antigen presenting molecules and those polymorphism can change individuals' immune response. We investigated the HLA-A, -B (class I), and -DRB1 (class II) polymorphism in Vietnamese children with different severity (DHF/DSS) by a hospital-based case-control study. The study showed persons carrying HLA-A*2402/03/10 are about 2 times more likely to have severe dengue infection than others. On the other hand, HLA-DRB1*0901 persons are less likely to develop DSS with DEN-2 virus infection. These results clearly demonstrated that HLA controlled the susceptibility to severe forms of DV infection

    Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)

    Get PDF
    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement
    corecore