695 research outputs found
Two-Staged Magnetoresistance Driven by Ising-like Spin Sublattice in SrCo6O11
A two-staged, uniaxial magnetoresistive effect has been discovered in
SrCo6O11 having a layered hexagonal structure. Conduction electrons and
localized Ising spins are in different sublattices but their interpenetration
makes the conduction electrons sensitively pick up the stepwise
field-dependence of magnetization. The stepwise field-dependence suggests two
competitive interlayer interactions between ferromagnetic Ising-spin layers,
i.e., a ferromagnetic nearest-layer interaction and an antiferromagnetic
next-nearest-layer interaction. This oxide offers a unique opportunity to study
nontrivial interplay between conduction electrons and Ising spins, the coupling
of which can be finely controlled by a magnetic field of a few Tesla.Comment: 14 pages, 4 figures, accepted for publication in Phys. Rev. Let
Electromagnons in the multiferroic state of perovskite manganites with symmetric-exchange striction
We have investigated electrically-active magnetic excitations
(electromagnons) in perovskite manganites with the -type (up-up-down-down)
spin structure by terahertz spectroscopy. EuYMnO (0.11) and YLuMnO (01) without magnetic -moments,
which host collinear sinusoidal, -type, cycloidal, and -type spin orders,
are used to examine the systematics of possible electromagnons. Three-peak
structures (23, 35, 45 cm) of magnetic origin show up in the -type
phase with little composition () dependence of frequencies, making a
contrast with the electromagnons observed in the cycloidal-spin ()
phases. One of these electromagnon is ascribed to the zone-edge magnon mode
based on the calculated magnon dispersions.Comment: 5 pages, 4 figure
Electromagnons in the multiferroic state of perovskite manganites with symmetric-exchange striction
We have investigated electrically-active magnetic excitations
(electromagnons) in perovskite manganites with the -type (up-up-down-down)
spin structure by terahertz spectroscopy. EuYMnO (0.11) and YLuMnO (01) without magnetic -moments,
which host collinear sinusoidal, -type, cycloidal, and -type spin orders,
are used to examine the systematics of possible electromagnons. Three-peak
structures (23, 35, 45 cm) of magnetic origin show up in the -type
phase with little composition () dependence of frequencies, making a
contrast with the electromagnons observed in the cycloidal-spin ()
phases. One of these electromagnon is ascribed to the zone-edge magnon mode
based on the calculated magnon dispersions.Comment: 5 pages, 4 figure
Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe
Ferroelectrics with spontaneous electric polarization play an essential role
in today's device engineering, such as capacitors and memories. Their physical
properties are further enriched by suppressing the long-range polar order, as
is exemplified by quantum paraelectrics with giant piezoelectric and dielectric
responses at low temperatures. Likewise in metals, a polar lattice distortion
has been theoretically predicted to give rise to various unusual physical
properties. So far, however, a "ferroelectric"-like transition in metals has
seldom been controlled and hence its possible impacts on transport phenomena
remain unexplored. Here we report the discovery of anomalous enhancement of
thermopower near the critical region between the polar and nonpolar metallic
phases in 1T'-MoNbTe with a chemically tunable polar
transition. It is unveiled from the first-principles calculations and
magnetotransport measurements that charge transport with strongly
energy-dependent scattering rate critically evolves towards the boundary to the
nonpolar phase, resulting in large cryogenic thermopower. Such a significant
influence of the structural instability on transport phenomena might arise from
the fluctuating or heterogeneous polar metallic states, which would pave a
novel route to improving thermoelectric efficiency.Comment: 26 pages, 4 figure
- …