606 research outputs found

    Role of Nlrp6 and Nlrp12 in the maintenance of intestinal homeostasis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102624/1/eji2871.pd

    RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems

    Full text link
    The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors-Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2)(1-4) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins-molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-kappaB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (T(H)1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62842/1/416194a.pd

    NOD2-C2 - a novel NOD2 isoform activating NF-ÎșB in a muramyl dipeptide-independent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The innate immune system employs several receptor families that form the basis of sensing pathogen-associated molecular patterns. NOD (nucleotide-binding and oligomerization domain) like receptors (NLRs) comprise a group of cytosolic proteins that trigger protective responses upon recognition of intracellular danger signals. NOD2 displays a tandem caspase recruitment domain (CARD) architecture, which is unique within the NLR family.</p> <p>Findings</p> <p>Here, we report a novel alternative transcript of the <it>NOD2 </it>gene, which codes for a truncated tandem CARD only protein, called NOD2-C2. The transcript isoform is highest expressed in leucocytes, a natural barrier against pathogen invasion, and is strictly linked to promoter usage as well as predominantly to one allele of the single nucleotide polymorphism rs2067085. Contrary to a previously identified truncated single CARD NOD2 isoform, NOD2-S, NOD2-C2 is able to activate NF-ÎșB in a dose dependent manner independently of muramyl dipeptide (MDP). On the other hand NOD2-C2 competes with MDPs ability to activate the NOD2-driven NF-ÎșB signaling cascade.</p> <p>Conclusion</p> <p>NOD2 transcripts having included an alternative exon downstream of exon 3 (exon 3a) are the endogenous equivalents of a previously described <it>in vitro </it>construct with the putative protein composed of only the two N-terminal CARDs. This protein form (NOD2-C2) activates NF-ÎșB independent of an MDP stimulus and is a potential regulator of NOD2 signaling.</p

    The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    Get PDF
    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-ÎșB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs

    A novel single nucleotide polymorphism within the NOD2 gene is associated with pulmonary tuberculosis in the Chinese Han, Uygur and Kazak populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study aimed to investigate the genetic polymorphisms in exon 4 of the <it>NOD2 </it>gene in tuberculosis patients and healthy controls, in order to clarify whether polymorphisms in the <it>NOD2 </it>gene is associated with tuberculosis.</p> <p>Methods</p> <p>A case-control study was performed on the Chinese Han, Uygur and Kazak populations. Exon 4 of the <it>NOD2 </it>gene was sequenced in 425 TB patients and 380 healthy controls to identify SNPs.</p> <p>Results</p> <p>The frequency of T/G genotypes for the Arg587Arg (CGT → CGG) single nucleotide polymorphism (SNP) in <it>NOD2 </it>was found to be significantly higher in the Uygur (34.9%) and Kazak (37.1%) populations than the Han population (18.6%). Also, the frequency of G/G genotypes for the Arg587Arg SNP was significantly higher in the Uyghur (8.3%) and Kazak (5.4%) populations than the Han population (0.9%). Meanwhile, no significant difference was found in the Arg587Arg polymorphism between the tuberculosis patients and healthy controls in the Uyghur and Kazak populations (<it>P </it>> 0.05) whereas, a significant difference was observed in the Arg587Arg polymorphism between the tuberculosis patients and healthy controls in the Han population (<it>P </it>< 0.01). The odd ratio of 2.16 (95% CI = 1.31-3.58; <it>P </it>< 0.01) indicated that the Arg587Arg SNP in <it>NOD2 </it>may be associated with susceptibility to tuberculosis in the Chinese Han population.</p> <p>Conclusions</p> <p>Our study is the first to demonstrate that the Arg587Arg SNP in <it>NOD2 </it>is a new possible risk factor for tuberculosis in the Chinese Han population, but not in the Uyghur and Kazak populations. Our results may reflect racial differences in genetic susceptibility to tuberculosis.</p

    The NOD/RIP2 Pathway Is Essential for Host Defenses Against Chlamydophila pneumoniae Lung Infection

    Get PDF
    Here we investigated the role of the Nod/Rip2 pathway in host responses to Chlamydophila pneumoniae–induced pneumonia in mice. Rip2−/− mice infected with C. pneumoniae exhibited impaired iNOS expression and NO production, and delayed neutrophil recruitment to the lungs. Levels of IL-6 and IFN-γ levels as well as KC and MIP-2 levels in bronchoalveolar lavage fluid (BALF) were significantly decreased in Rip2−/− mice compared to wild-type (WT) mice at day 3. Rip2−/− mice showed significant delay in bacterial clearance from the lungs and developed more severe and chronic lung inflammation that continued even on day 35 and led to increased mortality, whereas WT mice cleared the bacterial load, recovered from acute pneumonia, and survived. Both Nod1−/− and Nod2−/− mice also showed delayed bacterial clearance, suggesting that C. pneumoniae is recognized by both of these intracellular receptors. Bone marrow chimera experiments demonstrated that Rip2 in BM-derived cells rather than non-hematopoietic stromal cells played a key role in host responses in the lungs and clearance of C. pneumoniae. Furthermore, adoptive transfer of WT macrophages intratracheally was able to rescue the bacterial clearance defect in Rip2−/− mice. These results demonstrate that in addition to the TLR/MyD88 pathway, the Nod/Rip2 signaling pathway also plays a significant role in intracellular recognition, innate immune host responses, and ultimately has a decisive impact on clearance of C. pneumoniae from the lungs and survival of the infectious challenge
    • 

    corecore