382 research outputs found

    Approaches to Three-Dimensional Transformation Optical Media Using Quasi-Conformal Coordinate Transformations

    Full text link
    We introduce an approach to the design of three-dimensional transformation optical (TO) media based on a generalized quasi-conformal mapping approach. The generalized quasi-conformal TO (QCTO) approach enables the design of media that can, in principle, be broadband and low-loss, while controlling the propagation of waves with arbitrary angles of incidence and polarization. We illustrate the method in the design of a three-dimensional "carpet" ground plane cloak and of a flattened Luneburg lens. Ray-trace studies provide a confirmation of the performance of the QCTO media, while also revealing the limited performance of index-only versions of these devices

    Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging

    Full text link
    We present the theory, design, and realization of a polarization-insensitive metamaterial absorber for terahertz frequencies. We derive geometrical-independent conditions for effective medium absorbers in general, and for resonant metamaterials specically. Our fabricated design reaches and absorptivity of 78% at 1.145 ThzComment: 6 Pages, 5 figures; figures update

    A Perfect Metamaterial Absorber

    Full text link
    We present the design for an absorbing metamaterial element with near unity absorbance. Our structure consists of two metamaterial resonators that couple separately to electric and magnetic fields so as to absorb all incident radiation within a single unit cell layer. We fabricate, characterize, and analyze a metamaterial absorber with a slightly lower predicted absorbance of 96%. This achieves a simulated full width at half maximum (FWHM) absorbance of 4% thus making this material ideal for imaging purposes. Unlike conventional absorbers, our metamaterial consists solely of metallic elements. The underlying substrate can therefore be chosen independently of the substrate's absorptive qualities and optimized for other parameters of interest. We detail the design and simulation process that led to our metamaterial, and our experiments demonstrate a peak absorbance greater than 88% at 11.5 GHz

    Cumulants as non-Gaussian qualifiers

    Full text link
    We discuss the requirements of good statistics for quantifying non-Gaussianity in the Cosmic Microwave Background. The importance of rotational invariance and statistical independence is stressed, but we show that these are sometimes incompatible. It is shown that the first of these requirements prefers a real space (or wavelet) formulation, whereas the latter favours quantities defined in Fourier space. Bearing this in mind we decide to be eclectic and define two new sets of statistics to quantify the level of non-Gaussianity. Both sets make use of the concept of cumulants of a distribution. However, one set is defined in real space, with reference to the wavelet transform, whereas the other is defined in Fourier space. We derive a series of properties concerning these statistics for a Gaussian random field and show how one can relate these quantities to the higher order moments of temperature maps. Although our frameworks lead to an infinite hierarchy of quantities we show how cosmic variance and experimental constraints give a natural truncation of this hierarchy. We then focus on the real space statistics and analyse the non-Gaussian signal generated by points sources obscured by large scale Gaussian fluctuations. We conclude by discussing the practical implementations of these techniques

    Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab

    Get PDF
    We present an ultra broadband thin-film infrared absorber made of saw-toothed anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence is supported in a wide range of frequencies, where the full absorption width at half maximum is about 86%. Such property is retained well at a very wide range of incident angles too. Light of shorter wavelengths are harvested at upper parts of the sawteeth of smaller widths, while light of longer wavelengths are trapped at lower parts of larger tooth widths. This phenomenon is explained by the slowlight modes in anisotropic metamaterial waveguide. Our study can be applied in the field of designing photovoltaic devices and thermal emitters.Comment: 12 pages, 4 picture

    The Clustering of Colour Selected Galaxies

    Get PDF
    We present measurements of the angular correlation function of galaxies selected from a B_J=23.5 multicolour survey of two 5 degree by 5 degree fields located at high galactic latitudes. The galaxy catalogue of approximately 400,000 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low-redshift. Measurements of the z=0.4 correlation function at large angular scales show no evidence for a break from a power law though our results are not inconsistent with a break at >15 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly due to dwarf galaxies within z=0.11 clusters near the South Galactic Pole. Colour selection is used to study the clustering of galaxies z=0 to z=0.4. The galaxy correlation function is found to strongly depend on colour with red galaxies more strongly clustered than blue galaxies by a factor of 5 at small scales. The slope of the correlation function is also found to vary with colour with gamma=1.8 for red galaxies while gamma=1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied though there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range with clustering consistent with r_0=2 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe and suggests galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low redshift galaxy population with clustering properties similar to faint blue galaxies.Comment: Accepted for publication in MNRAS. 13 pages, 20 figure

    Large-scale periodicity in the distribution of QSO absorption-line systems

    Full text link
    The spatial-temporal distribution of absorption-line systems (ALSs) observed in QSO spectra within the cosmological redshift interval z = 0.0--4.3 is investigated on the base of our updated catalog of absorption systems. We consider so called metallic systems including basically lines of heavy elements. The sample of the data displays regular variations (with amplitudes ~ 15 -- 20%) in the z-distribution of ALSs as well as in the eta-distribution, where eta is a dimensionless line-of-sight comoving distance, relatively to smoother dependences. The eta-distribution reveals the periodicity with period Delta eta = 0.036 +/- 0.002, which corresponds to a spatial characteristic scale (108 +/- 6) h(-1) Mpc or (alternatively) a temporal interval (350 +/- 20) h(-1) Myr for the LambdaCDM cosmological model. We discuss a possibility of a spatial interpretation of the results treating the pattern obtained as a trace of an order imprinted on the galaxy clustering in the early Universe.Comment: AASTeX, 13 pages, with 9 figures, Accepted for publication in Astrophysics & Space Scienc

    Large Scale Structure of the Universe

    Full text link
    Galaxies are not uniformly distributed in space. On large scales the Universe displays coherent structure, with galaxies residing in groups and clusters on scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space, known as voids, contain very few galaxies and span the volume in between these structures. This observed large scale structure depends both on cosmological parameters and on the formation and evolution of galaxies. Using the two-point correlation function, one can trace the dependence of large scale structure on galaxy properties such as luminosity, color, stellar mass, and track its evolution with redshift. Comparison of the observed galaxy clustering signatures with dark matter simulations allows one to model and understand the clustering of galaxies and their formation and evolution within their parent dark matter halos. Clustering measurements can determine the parent dark matter halo mass of a given galaxy population, connect observed galaxy populations at different epochs, and constrain cosmological parameters and galaxy evolution models. This chapter describes the methods used to measure the two-point correlation function in both redshift and real space, presents the current results of how the clustering amplitude depends on various galaxy properties, and discusses quantitative measurements of the structures of voids and filaments. The interpretation of these results with current theoretical models is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets, Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume editor W. C. Keel, v2 includes additional references, updated to match published versio

    Measuring our universe from galaxy redshift surveys

    Get PDF
    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe, detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living Reviews in Relativity, http://www.livingreviews.org/lrr-2004-
    corecore