49 research outputs found

    Gravitational shock waves and vacuum fluctuations

    Get PDF
    We show that the vacuum expectation value of the stress-energy tensor of a scalar particle on the background of a spherical gravitational shock wave does not give a finite expression in second order perturbation theory, contrary to the case seen for the impulsive wave. No infrared divergences appear at this order. This result shows that there is a qualitative difference between the shock and impulsive wave solutions which is not exhibited in first order.Comment: Submitted to Class. and Quant. Grav.,7 pages, no figure

    Comparison of Exact and perturbative Results for Two Metrics

    Get PDF
    We compare the exact and perturbative results in two metrics and show that the spurious effects due to the perturbation method do not survive for physically relevant quantities such as the vacuum expectation value of the stress-energy tensor.Comment: 12 page

    Vacuum Fluctuations of a massless spin-1/2 field around multiple cosmic strings

    Get PDF
    We study the interaction of a massless quantized spinor field with the gravitational filed of N parallel static cosmic strings by using a perturbative approach. We show that the presence of more than one cosmic string gives rise to an additional contribution to the energy density of vacuum fluctuations, thereby leading to a vacuum force attraction between two parallel cosmic strings.Comment: Class. Quantum Grav. 14(1997) 321

    A Model with Interacting Composites

    Full text link
    We show that we can construct a model in 3+1 dimensions where only composite scalars take place in physical processes as incoming and outgoing particles, whereas constituent spinors only act as intermediary particles. Hence while the spinor-spinor scattering goes to zero, the scattering of composites gives nontrivial results.Comment: 9 Page

    Can a Unruh Detector Feel a Cosmic String?

    Get PDF
    Unruh's detector calculation is used to study the effect of the defect angle β\beta in a space-time with a cosmic string for both the excitation and deexcitation cases. It is found that a rotating detector results in a non-zero effect for both finite (small) and infinite (large) time

    Vacuum fluctuations for spherical gravitational impulsive waves

    Full text link
    We propose a method for calculating vacuum fluctuations on the background of a spherical impulsive gravitational wave which results in a finite expression for the vacuum expectation value of the stress-energy tensor. The method is based on first including a cosmological constant as an auxiliary constant. We show that the result for the vacuum expectation value of the stress-energy tensor in second-order perturbation theory is finite if both the cosmological constant and the infrared parameter tend to zero at the same rate.Comment: Class. Quantum Grav. 13(1996) 2683-269

    Particle Creation If a Cosmic String Snaps

    Get PDF
    We calculate the Bogolubov coefficients for a metric which describes the snapping of a cosmic string. If we insist on a matching condition for all times {\it and} a particle interpretation, we find no particle creation.Comment: 10 pages, MRC.PH.17/9

    Gravitational Instantons from Minimal Surfaces

    Get PDF
    Physical properties of gravitational instantons which are derivable from minimal surfaces in 3-dimensional Euclidean space are examined using the Newman-Penrose formalism for Euclidean signature. The gravitational instanton that corresponds to the helicoid minimal surface is investigated in detail. This is a metric of Bianchi Type VII0VII_0, or E(2) which admits a hidden symmetry due to the existence of a quadratic Killing tensor. It leads to a complete separation of variables in the Hamilton-Jacobi equation for geodesics, as well as in Laplace's equation for a massless scalar field. The scalar Green function can be obtained in closed form which enables us to calculate the vacuum fluctuations of a massless scalar field in the background of this instanton.Comment: One figure available by fax upon request. Abstract missing in original submission. Submitted to Classical and Quantum Gravit

    Impulsive spherical gravitational waves

    Get PDF
    Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the 2-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary non-linear holomorphic transformation. Using 2-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a world-line with constant acceleration

    Properties of Solutions in 2+1 Dimensions

    Get PDF
    We solve the Einstein equations for the 2+1 dimensions with and without scalar fields. We calculate the entropy, Hawking temperature and the emission probabilities for these cases. We also compute the Newman-Penrose coefficients for different solutions and compare them.Comment: 16 pages, 1 figures, PlainTeX, Dedicated to Prof. Yavuz Nutku on his 60th birthday. References adde
    corecore