115 research outputs found

    Fast and Robust Characterization of Time-Heterogeneous Sequence Evolutionary Processes Using Substitution Mapping

    Get PDF
    Genes and genomes do not evolve similarly in all branches of the tree of life. Detecting and characterizing the heterogeneity in time, and between lineages, of the nucleotide (or amino acid) substitution process is an important goal of current molecular evolutionary research. This task is typically achieved through the use of non-homogeneous models of sequence evolution, which being highly parametrized and computationally-demanding are not appropriate for large-scale analyses. Here we investigate an alternative methodological option based on probabilistic substitution mapping. The idea is to first reconstruct the substitutional history of each site of an alignment under a homogeneous model of sequence evolution, then to characterize variations in the substitution process across lineages based on substitution counts. Using simulated and published datasets, we demonstrate that probabilistic substitution mapping is robust in that it typically provides accurate reconstruction of sequence ancestry even when the true process is heterogeneous, but a homogeneous model is adopted. Consequently, we show that the new approach is essentially as efficient as and extremely faster than (up to 25 000 times) existing methods, thus paving the way for a systematic survey of substitution process heterogeneity across genes and lineages

    Ancestral population genomics

    No full text
    Borrowing both from population genetics and phylogenetics, the field of population genomics emerged as full genomes of several closely related species were available. Providing we can properly model sequence evolution within populations undergoing speciation events, this resource enables us to estimate key population genetics parameters such as ancestral population sizes and split times. Furthermore we can enhance our understanding of the recombination process and investigate various selective forces. With the advent of resequencing technologies, genome-wide patterns of diversity in extant populations have now come to complement this picture, offering an increasing power to study more recent genetic history

    A New Malaria Agent in African Hominids

    Get PDF
    Plasmodium falciparum is the major human malaria agent responsible for 200 to 300 million infections and one to three million deaths annually, mainly among African infants. The origin and evolution of this pathogen within the human lineage is still unresolved. A single species, P. reichenowi, which infects chimpanzees, is known to be a close sister lineage of P. falciparum. Here we report the discovery of a new Plasmodium species infecting Hominids. This new species has been isolated in two chimpanzees (Pan troglodytes) kept as pets by villagers in Gabon (Africa). Analysis of its complete mitochondrial genome (5529 nucleotides including Cyt b, Cox I and Cox III genes) reveals an older divergence of this lineage from the clade that includes P. falciparum and P. reichenowi (∼21±9 Myrs ago using Bayesian methods and considering that the divergence between P. falciparum and P. reichenowi occurred 4 to 7 million years ago as generally considered in the literature). This time frame would be congruent with the radiation of hominoids, suggesting that this Plasmodium lineage might have been present in early hominoids and that they may both have experienced a simultaneous diversification. Investigation of the nuclear genome of this new species will further the understanding of the genetic adaptations of P. falciparum to humans. The risk of transfer and emergence of this new species in humans must be now seriously considered given that it was found in two chimpanzees living in contact with humans and its close relatedness to the most virulent agent of malaria

    Dynamics of Rye Chromosome 1R Regions with High or Low Crossover Frequency in Homology Search and Synapsis Development

    Get PDF
    In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis

    Widespread Genomic Signatures of Natural Selection in Hominid Evolution

    Get PDF
    Selection acting on genomic functional elements can be detected by its indirect effects on population diversity at linked neutral sites. To illuminate the selective forces that shaped hominid evolution, we analyzed the genomic distributions of human polymorphisms and sequence differences among five primate species relative to the locations of conserved sequence features. Neutral sequence diversity in human and ancestral hominid populations is substantially reduced near such features, resulting in a surprisingly large genome average diversity reduction due to selection of 19–26% on the autosomes and 12–40% on the X chromosome. The overall trends are broadly consistent with “background selection” or hitchhiking in ancestral populations acting to remove deleterious variants. Average selection is much stronger on exonic (both protein-coding and untranslated) conserved features than non-exonic features. Long term selection, rather than complex speciation scenarios, explains the large intragenomic variation in human/chimpanzee divergence. Our analyses reveal a dominant role for selection in shaping genomic diversity and divergence patterns, clarify hominid evolution, and provide a baseline for investigating specific selective events

    Skewed Exposure to Environmental Antigens Complements Hygiene Hypothesis in Explaining the Rise of Allergy

    Get PDF
    The Hygiene Hypothesis has been recognized as an important cornerstone to explain the sudden increase in the prevalence of asthma and allergic diseases in modernized culture. The recent epidemic of allergic diseases is in contrast with the gradual implementation of Homo sapiens sapiens to the present-day forms of civilization. This civilization forms a gradual process with cumulative effects on the human immune system, which co-developed with parasitic and commensal Helminths. The clinical manifestation of this epidemic, however, became only visible in the second half of the twentieth century. In order to explain these clinical effects in terms of the underlying IgE-mediated reactions to innocuous environmental antigens, the low biodiversity of antigens in the domestic environment plays a pivotal role. The skewing of antigen exposure as a cumulative effect of reducing biodiversity in the immediate human environment as well as in changing food habits, provides a sufficient and parsimonious explanation for the rise in allergic diseases in a highly developed and helminth-free modernized culture. Socio-economic tendencies that incline towards a further reduction of environmental biodiversity may provide serious concern for future health. This article explains that the “Hygiene Hypothesis”, the “Old Friends Hypothesis”, and the “Skewed Antigen Exposure Hypothesis” are required to more fully explain the rise of allergy in modern societies

    Patterns of Positive Selection and Neutral Evolution in the Protein-Coding Genes of Tetraodon and Takifugu

    Get PDF
    Recent genome-wide analyses have revealed patterns of positive selection acting on protein-coding genes in humans and mammals. To assess whether the conclusions drawn from these analyses are valid for other vertebrates and to identify mammalian specificities, I have investigated the selective pressure acting on protein-coding genes of the puffer fishes Tetraodon and Takifugu. My results indicate that the strength of purifying selection in puffer fishes is similar to previous reports for murids but stronger in hominids, which have a smaller population size. Gene ontology analyses show that more than half of the biological processes targeted by positive selection in mammals are also targeted in puffer fishes, highlighting general patterns for vertebrates. Biological processes enriched with positively selected genes that are shared between mammals and fishes include immune and defense responses, signal transduction, regulation of transcription and several of their descendent terms. Mammalian-specific processes displaying an excess of positively selected genes are related to sensory perception and neurological processes. The comparative analyses also revealed that, for both mammals and fishes, genes encoding extracellular proteins are preferentially targeted by positive selection, indicating that adaptive evolution occurs more often in the extra-cellular environment rather than inside the cell. Moreover, I present here the first genome-wide characterization of neutrally-evolving regions of protein-coding genes. This analysis revealed an unexpectedly high proportion of genes containing both positively selected motifs and neutrally-evolving regions, uncovering a strong link between neutral evolution and positive selection. I speculate that neutrally-evolving regions are a major source of novelties screened by natural selection

    Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives

    Get PDF
    Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution
    corecore