646 research outputs found

    Vascular graft infection due to Pasteurella multocida

    Get PDF

    A double-sided, shield-less stave prototype for the ATLAS upgrade strip tracker for the high luminosity LHC

    Get PDF
    A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools

    Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    Full text link
    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture

    Scientific Potential of Einstein Telescope

    Full text link
    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201

    Game Plan: What AI can do for Football, and What Football can do for AI

    Get PDF
    The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented analytics possibilities in various team and individual sports, including baseball, basketball, and tennis. More recently, AI techniques have been applied to football, due to a huge increase in data collection by professional teams, increased computational power, and advances in machine learning, with the goal of better addressing new scientific challenges involved in the analysis of both individual players’ and coordinated teams’ behaviors. The research challenges associated with predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision. In this paper, we provide an overarching perspective highlighting how the combination of these fields, in particular, forms a unique microcosm for AI research, while offering mutual benefits for professional teams, spectators, and broadcasters in the years to come. We illustrate that this duality makes football analytics a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI. We review the state-of-theart and exemplify the types of analysis enabled by combining the aforementioned fields, including illustrative examples of counterfactual analysis using predictive models, and the combination of game-theoretic analysis of penalty kicks with statistical learning of player attributes. We conclude by highlighting envisioned downstream impacts, including possibilities for extensions to other sports (real and virtual)

    Toward ultrafast magnetic depth profiling using time resolved x ray resonant magnetic reflectivity

    Get PDF
    During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time resolved x ray resonant magnetic reflectivity, can distinguish local and non local effects. Here, we demonstrate the feasibility of this technique in a pump probe geometry using a custom built reflectometer at the FLASH2 free electron laser FEL . Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 amp; 8201;nm amp; 8771;310 amp; 8201;eV , we were able to probe close to the Fe L3 edge 706.8 amp; 8201;eV of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non homogeneous loss of magnetization and a significant dilation of 2 amp; 8201; of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetizatio

    Neither fair nor unchangeable but part of the natural order: orientations towards inequality in the face of criticism of the economic system

    Get PDF
    The magnitude of climate change threats to life on the planet is not matched by the level of current mitigation strategies. To contribute to our understanding of inaction in the face of climate change, the reported study draws upon the pro status quo motivations encapsulated within System Justification Theory. In an online questionnaire study, participants (N = 136) initially completed a measure of General System Justification. Participants in a “System-critical” condition were then exposed to information linking environmental problems to the current economic system; participants in a Control condition were exposed to information unrelated to either environmental problems or the economic system. A measure of Economic System Justification was subsequently administered. Regressions of Economic System Justification revealed interactions between General System Justification and Information Type: higher general system justifiers in the System-critical condition rated the economic system as less fair than did their counterparts in the Control condition. However, they also indicated inequality as more natural than did their counterparts in the Control condition. The groups did not differ in terms of beliefs about the economic system being open to change. The results are discussed in terms of how reassurance about the maintenance of the status quo may be bolstered by recourse to beliefs in a natural order

    Systemic and local antibiotic prophylaxis in the prevention of Staphylococcus epidermidis graft infection

    Get PDF
    BACKGROUND: The aim of the study was to investigate the in vivo efficacy of local and systemic antibiotic prophylaxis in the prevention of Staphylococcus (S.) epidermidis graft infection in a rat model and to evaluate the bacterial adherence to frequently used prosthetic graft materials. METHODS: Graft infections were established in the subcutaneous tissue of 120 male Wistar rats by implantation of Dacron/ePTFE grafts followed by topical inoculation with 2 Ă— 10(7 )CFUs of clinical isolate of methicillin-resistant S. epidermidis. Each of the graft series included a control group, one contaminated group that did not receive any antibiotic prophylaxis, two contaminated groups that received systemic prophylaxis with teicoplanin or levofloxacin and two contaminated groups that received teicoplanin-soaked or levofloxacin-soaked grafts. The grafts were removed 7 days after implantation and evaluated by quantitative culture. RESULTS: There was significant bacterial growth inhibition in the groups given systemic or local prophylaxis (P < 0.05). Methicillin-resistant S. epidermidis had greater affinity to Dacron graft when compared with ePTFE graft in the untreated contaminated groups (P < 0.05). CONCLUSION: The study demonstrated that the usage of systemic or local prophylaxis and preference of ePTFE graft can be useful in reducing the risk of vascular graft infections caused by staphylococcal strains with high levels of resistance
    • …
    corecore