172 research outputs found

    News, intelligence and 'little lies' : rumours between the Cherokees and the British 1740-1785

    Get PDF
    Rumour and information are one of the most fundamental ways in which people engage with one another. Rumours can change the way that individuals and groups see each other and the actions that they take. Sociologists and anthropologists have long used rumour as a way to explore the experiences of their subjects. Historians of early America have, in recent years, begun to make use of rumour as a way of examining the, often hidden, world of interactions between American Indians and white Europeans. This thesis will expand upon this work by exploring the changing role of rumour within an intercultural relationship over several decades. This thesis will focus on rumour in the relationship between the Cherokee Nation and the colonists of the British Empire. It will explore the ways that rumour influenced these interactions and the impact of the rapidly changing backcountry environment of the latter eighteenth century, both on rumour and on the wider Cherokee- British relationship. This thesis will argue that rumour shifted in the course of the eighteenth century from being a diplomatic tool which could be used- either to create further panic and confusion or to calm and smooth over problems- to an uncontrollable force which would deepen and exacerbate the divisions between Cherokees and the British. Rumour played an important role in politics and society in the eighteenth century backcountry and its changing function offers a way to better understand the shifting currents of life in early America

    Design and technology of DEPFET pixel sensors for linear collider applications

    Get PDF
    Abstract The performance requirements of vertex detectors for future linear collider experiments is very challenging, especially for the detector's innermost sensor layers. The DEPleted Field Effect Transistor (DEPFET), combining detector and amplifier operation, is capable to meet these requirements. A silicon technology is presented which allows production of large sensor arrays consisting of linear DEPFET detector structures. The envisaged pixel array offers low noise and low power operation. To ensure a high radiation length a thinning technology based on direct wafer bonding is proposed

    Exposed Hydrophobic Residues in Human Immunodeficiency Virus Type 1 Vpr Helix-1 Are Important for Cell Cycle Arrest and Cell Death

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) accessory protein viral protein R (Vpr) is a major determinant for virus-induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr, which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle arrest and cytopathicity functions of Vpr

    Differential Effects of Vpr on Single-cycle and Spreading HIV-1 Infections in CD4+ T-cells and Dendritic Cells

    Get PDF
    The Vpr protein of human immunodeficiency virus type 1 (HIV-1) contributes to viral replication in non-dividing cells, specifically those of the myeloid lineage. However, the effects of Vpr in enhancing HIV-1 infection in dendritic cells have not been extensively investigated. Here, we evaluated the role of Vpr during infection of highly permissive peripheral blood mononuclear cells (PBMCs) and CD4+ T-cells and compared it to that of monocyte-derived dendritic cells (MDDCs), which are less susceptible to HIV-1 infection. Infections of dividing PBMCs and non-dividing MDDCs were carried out with single-cycle and replication-competent HIV-1 encoding intact Vpr or Vpr-defective mutants. In contrast to previous findings, we observed that single-cycle HIV-1 infection of both PBMCs and MDDCs was significantly enhanced in the presence of Vpr when the viral stocks were carefully characterized and titrated. HIV-1 DNA quantification revealed that Vpr only enhanced the reverse transcription and nuclear import processes in single-cycle HIV-1 infected MDDCs, but not in CD4+ T-cells. However, a significant enhancement in HIV-1 gag mRNA expression was observed in both CD4+ T-cells and MDDCs in the presence of Vpr. Furthermore, Vpr complementation into HIV-1 virions did not affect single-cycle viral infection of MDDCs, suggesting that newly synthesized Vpr plays a significant role to facilitate single-cycle HIV-1 infection. Over the course of a spreading infection, Vpr significantly enhanced replication-competent HIV-1 infection in MDDCs, while it modestly promoted viral infection in activated PBMCs. Quantification of viral DNA in replication-competent HIV-1 infected PBMCs and MDDCs revealed similar levels of reverse transcription products, but increased nuclear import in the presence of Vpr independent of the cell types. Taken together, our results suggest that Vpr has differential effects on single-cycle and spreading HIV-1 infections, which are dependent on the permissiveness of the target cell

    Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update

    Get PDF
    The blood-brain barrier (BBB) is a diffusion barrier that has an important role in maintaining a precisely regulated microenvironment protecting the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neurological diseases. Human Immunodeficiency Virus (HIV) infection in the Central Nervous System (CNS) is an early event even before the serodiagnosis for HIV positivity or the initiation of antiretroviral therapy (ART), resulting in neurological complications in many of the infected patients. Macrophages, microglia and astrocytes (in low levels) are the most productively/latently infected cell types within the CNS. In this brief review, we have discussed about the effect of HIV infection and viral proteins on the integrity and function of BBB, which may contribute to the progression of HIV associated neurocognitive disorders

    Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors

    Get PDF
    HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021). The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors

    Using death to one's advantage: HIV modulation of apoptosis

    Get PDF
    Infection by human immunodeficiency virus (HIV) is associated with an early immune dysfunction and progressive destruction of CD4+ T lymphocytes. This progressive disappearance of T cells leads to a lack of immune control of HIV replication and to the development of immune deficiency resulting in the increased occurrence of opportunistic infections associated with acquired immune deficiency syndrome (AIDS). The HIV-induced, premature destruction of lymphocytes is associated with the continuous production of HIV viral proteins that modulate apoptotic pathways. The viral proteins, such as Tat, Env, and Nef, are associated with chronic immune activation and the continuous induction of apoptotic factors. Viral protein expression predisposes lymphocytes, particularly CD4+ T cells, CD8+ T cells, and antigen-presenting cells, to evolve into effectors of apoptosis and as a result, to lead to the destruction of healthy, non-infected T cells. Tat and Nef, along with Vpu, can also protect HIV-infected cells from apoptosis by increasing anti-apoptotic proteins and down- regulating cell surface receptors recognized by immune system cells. This review will discuss the validity of the apoptosis hypothesis in HIV disease and the potential mechanism(s) that HIV proteins perform in the progressive T cell depletion observed in AIDS pathogenesis. Originally published Leukemia, Vol. 15, No. 3, Mar 200

    Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells)

    Get PDF
    In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described

    Revisiting HIV-1 uncoating

    Get PDF
    HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-integration complexes (PICs), which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate methods to study uncoating and addressing the many questions that remain unanswered
    corecore