878 research outputs found

    Scale-free equilibria of self-gravitating gaseous disks with flat rotation curves

    Full text link
    We introduce exact analytical solutions of the steady-state hydrodynamic equations of scale-free, self-gravitating gaseous disks with flat rotation curves. We express the velocity field in terms of a stream function and obtain a third-order ordinary differential equation (ODE) for the angular part of the stream function. We present the closed-form solutions of the obtained ODE and construct hydrodynamical counterparts of the power-law and elliptic disks, for which self-consistent stellar dynamical models are known. We show that the kinematics of the Large Magellanic Cloud can well be explained by our findings for scale-free elliptic disks.Comment: AAS preprint format, 21 pages, 8 figures, accepted for publication in The Astrophysical Journa

    Locality in Theory Space

    Get PDF
    Locality is a guiding principle for constructing realistic quantum field theories. Compactified theories offer an interesting context in which to think about locality, since interactions can be nonlocal in the compact directions while still being local in the extended ones. In this paper, we study locality in "theory space", four-dimensional Lagrangians which are dimensional deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV) completions, one can understand the origin of theory space locality by the irrelevance of nonlocal operators. From an infrared (IR) point of view, though, theory space locality does not appear to be a special property, since the lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear sigma model, and locality imposes seemingly arbitrary constraints on the KK spectrum and interactions. We argue that these constraints are nevertheless important from an IR perspective, since they affect the four-dimensional cutoff of the theory where high energy scattering hits strong coupling. Intriguingly, we find that maximizing this cutoff scale implies five-dimensional locality. In this way, theory space locality is correlated with weak coupling in the IR, independent of UV considerations. We briefly comment on other scenarios where maximizing the cutoff scale yields interesting physics, including theory space descriptions of QCD and deconstructions of anti-de Sitter space.Comment: 40 pages, 11 figures; v2: references and clarifications added; v3: version accepted by JHE

    Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores

    Get PDF
    We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimately collapses dynamically to form a protostar. In this paper, we focus on the inner centrifugally-supported disk, which is formed only after a central protostar exists, and grows by dynamical accretion from the flattened envelope. We estimate a centrifugal radius for the collapse of mass shells within a rotating, magnetized cloud core. The centrifugal radius of the inner disk is related to its mass through the two important parameters characterizing the background medium: the background rotation rate \Omb and the background magnetic field strength \Bref. We also revisit the issue of how rapidly mass is deposited onto the disk (the mass accretion rate) and use several recent models to comment upon the likely outcome in magnetized cores. Our model predicts that a significant centrifugal disk (much larger than a stellar radius) will be present in the very early (Class 0) stage of protostellar evolution. Additionally, we derive an upper limit for the disk radius as it evolves due to internal torques, under the assumption that the star-disk system conserves its mass and angular momentum even while most of the mass is transferred to a central star.Comment: 23 pages, 1 figure, aastex, to appear in the Astrophysical Journal (10 Dec 1998

    Flowing Between Fermionic Fixed Points

    Full text link
    We study holographic Wilsonian renormalization group flows for bulk spinor fields in AdS. We use this to compute the all-loop beta function for fermionic double trace operators in the dual conformal field theory.Comment: 21 pages. V2: Acknowledgement added; v3: Typo correcte

    Toxicity of (neo)adjuvant chemotherapy for BRCA1- and BRCA2-associated breast cancer

    Get PDF
    Treatment with (neo)adjuvant chemotherapy for breast cancer, as currently given, causes cell damage by induction of double-strand DNA breaks. Because BRCA1 and BRCA2 proteins play a role in the repair of DNA damage, the efficacy of (neo)adjuvant chemotherapy may be increased in BRCA1/2-associated breast cancer patients. As a downside, acute chemotherapy-related toxicity may also be increased. We selected all female patients who were treated at the Erasmus MC Cancer Institute, with (neo)adjuvant chemotherapy for primary or locoregional recurrence of breast cancer (PBC/LR) between January 1, 2004 and December 31, 2014. The primary outcome was the relative total dose intensity (RTDI), calculated for anthracyclines and taxanes separately. Secondary outcomes were the occurrence of febrile neutropenia, delay in chemotherapy administration, and switch to another chemotherapy regimen due to toxicity. In total, 701 patients treated for PBC/LR were eligible for data analyses, among which 85 BRCA1/2 mutation carriers (n = 67 BRCA1 and n = 18 BRCA2). The mean RTDI for anthracyclines was not significantly different between both groups (98.7 % in the BRCA1/2, 96.6 % in the sporadic group, p = 0.27). Also the mean RTDI for taxanes was not significantly different between the groups (93.6 % in the BRCA1/2-associated, 90.0 % in the sporadic group, p = 0.12). Linear regression analysis revealed no significant effect of BRCA1/2 mutation carriership on the RTDIs. No significant differences were found in the percentages of patients presenting with febrile neutropenia, having a delay in chemotherapy administration or switching to an altered chemotherapy regimen. Additionally, the odds ratios showed no significant effect of BRCA1/2 mutation carriership on the secondary outcome variables. (Neo)adjuvant chemotherapy-related toxicity was not different between BRCA1/2-associated and sporadic breast cancer patients suggesting that the DNA damage repair mechanism of non-cancer cells with only one normal copy of either the BRCA1 or BRCA2 gene is sufficiently functional to handle acute chemotherapy-associated toxicity

    Holographic and Wilsonian Renormalization Groups

    Full text link
    We develop parallels between the holographic renormalization group in the bulk and the Wilsonian renormalization group in the dual field theory. Our philosophy differs from most previous work on the holographic RG; the most notable feature is the key role of multi-trace operators. We work out the forms of various single- and double-trace flows. The key question, `what cutoff on the field theory corresponds to a radial cutoff in the bulk?' is left unanswered, but by sharpening the analogy between the two sides we identify possible directions.Comment: 31 pages, 3 figures. v2: Minor clarifications. Added reference

    Bounds for State Degeneracies in 2D Conformal Field Theory

    Full text link
    In this note we explore the application of modular invariance in 2-dimensional CFT to derive universal bounds for quantities describing certain state degeneracies, such as the thermodynamic entropy, or the number of marginal operators. We show that the entropy at inverse temperature 2 pi satisfies a universal lower bound, and we enumerate the principal obstacles to deriving upper bounds on entropies or quantum mechanical degeneracies for fully general CFTs. We then restrict our attention to infrared stable CFT with moderately low central charge, in addition to the usual assumptions of modular invariance, unitarity and discrete operator spectrum. For CFT in the range c_left + c_right < 48 with no relevant operators, we are able to prove an upper bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same conditions we also prove that a CFT can have a number of marginal deformations no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.Comment: 23 pages, LaTeX, minor change
    corecore