21 research outputs found
I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images
Image dehazing has become an important computational imaging topic in the
recent years. However, due to the lack of ground truth images, the comparison
of dehazing methods is not straightforward, nor objective. To overcome this
issue we introduce a new dataset -named I-HAZE- that contains 35 image pairs of
hazy and corresponding haze-free (ground-truth) indoor images. Different from
most of the existing dehazing databases, hazy images have been generated using
real haze produced by a professional haze machine. For easy color calibration
and improved assessment of dehazing algorithms, each scene include a MacBeth
color checker. Moreover, since the images are captured in a controlled
environment, both haze-free and hazy images are captured under the same
illumination conditions. This represents an important advantage of the I-HAZE
dataset that allows us to objectively compare the existing image dehazing
techniques using traditional image quality metrics such as PSNR and SSIM