83 research outputs found
Phase transition close to room temperature in BiFeO3 thin films
BiFeO3 (BFO) multiferroic oxide has a complex phase diagram that can be
mapped by appropriately substrate-induced strain in epitaxial films. By using
Raman spectroscopy, we conclusively show that films of the so-called
supertetragonal T-BFO phase, stabilized under compressive strain, displays a
reversible temperature-induced phase transition at about 100\circ, thus close
to room temperature.Comment: accepted in J. Phys.: Condens. Matter (Fast Track Communication
Infrared and THz studies of polar phonons and improper magnetodielectric effect in multiferroic BFO3 ceramics
BFO3 ceramics were investigated by means of infrared reflectivity and time
domain THz transmission spectroscopy at temperatures 20 - 950 K, and the
magnetodielectric effect was studied at 10 - 300 K, with the magnetic field up
to 9 T. Below 175 K, the sum of polar phonon contributions into the
permittivity corresponds to the value of measured permittivity below 1 MHz. At
higher temperatures, a giant low-frequency permittivity was observed, obviously
due to the enhanced conductivity and possible Maxwell-Wagner contribution.
Above 200 K the observed magnetodielectric effect is caused essentially through
the combination of magnetoresistance and the Maxwell-Wagner effect, as recently
predicted by Catalan (Appl. Phys. Lett. 88, 102902 (2006)). Since the
magnetodielectric effect does not occur due to a coupling of polarization and
magnetization as expected in magnetoferroelectrics, we call it improper
magnetodielectric effect. Below 175 K the magnetodielectric effect is by
several orders of magnitude lower due to the decreased conductivity. Several
phonons exhibit gradual softening with increasing temperature, which explains
the previously observed high-frequency permittivity increase on heating. The
observed non-complete phonon softening seems to be the consequence of the
first-order nature of the ferroelectric transition.Comment: subm. to PRB. revised version according to referees' report
High-pressure investigations of CaTiO3 up to 60 GPa using X-ray diffraction and Raman spectroscopy
In this work, we investigate calcium titanate (CaTiO3 - CTO) using X-ray
diffraction and Raman spectroscopy up to 60 and 55 GPa respectively. Both
experiments show that the orthorhombic Pnma structure remains stable up to the
highest pressures measured, in contradiction to ab-initio predictions. A fit of
the compression data with a second-order Birch-Murnaghan equation of state
yields a bulk modulus K0 of 181.0(6) GPa. The orthorhombic distortion is found
to increase slightly with pressure, in agreement with previous experiments at
lower pressures and the general rules for the evolution of perovskites under
pressure. High-pressure polarized Raman spectra also enable us to clarify the
Raman mode assignment of CTO and identify the modes corresponding to rigid
rotation of the octahedra, A-cation shifts and Ti-O bond stretching. The Raman
signature is then discussed in terms of compression mechanisms.Comment: 11 pages, 6 figures, 4 table
Recommended from our members
Interaction of low-energy electrons with surface polarity near ferroelastic domain boundaries
We derive surface polarity at and near ferroelastic domain boundaries from molecular dynamics simulations based on an ionic spring model. Interatomic gradient forces lead to flexoelectricity which, in turn, generates polarity at the surface and in twin boundaries. We then derive generic properties of electron scattering spectra equivalent to those observed in low-energy electron microscopy (LEEM) and mirror electron microscopy (MEM) experiments. Negatively (positively) charged surfaces reflect (attract) incident electrons with low kinetic energy. The electron images reveal the valley and ridge surface structures near the intersection of the twin boundary and the surface. Polarity in surface layers is predicted to be visible in LEEM and MEM spectra at neutral surfaces, but much less when surfaces are charged. Inward polarity reflects electrons similar to negative surface charges, and outward polarity backscatters electrons like positive surface charges. Both the polarity in the twin boundary and the physical topography scatter electrons, consistent with experimental LEEM and MEM experiments on
CaTi
O
3
with (001) and (111) surface terminations.EPSR
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
Control of surface potential at polar domain walls in a nonpolar oxide
Ferroic domain walls could play an important role in microelectronics, given
their nanometric size and often distinct functional properties. Until now,
devices and device concepts were mostly based on mobile domain walls in
ferromagnetic and ferroelectric materials. A less explored path is to make use
of polar domain walls in nonpolar ferroelastic materials. Indeed, while the
polar character of ferroelastic domain walls has been demonstrated,
polarization control has been elusive. Here, we report evidence for the
electrostatic signature of the domain-wall polarization in nonpolar calcium
titanate (CaTiO3). Macroscopic mechanical resonances excited by an ac electric
field are observed as a signature of a piezoelectric response caused by polar
walls. On the microscopic scale, the polarization in domain walls modifies the
local surface potential of the sample. Through imaging of surface potential
variations, we show that the potential at the domain wall can be controlled by
electron injection. This could enable devices based on nondestructive
information readout of surface potential
Early inhaled budesonide for the prevention of bronchopulmonary dysplasia
BACKGROUND Systemic glucocorticoids reduce the incidence of bronchopulmonary dysplasia among extremely preterm infants, but they may compromise brain development. The effects of inhaled glucocorticoids on outcomes in these infants are unclear. METHODS We randomly assigned 863 infants (gestational age, 23 weeks 0 days to 27 weeks 6 days) to early (within 24 hours after birth) inhaled budesonide or placebo until they no longer required oxygen and positive-pressure support or until they reached a postmenstrual age of 32 weeks 0 days. The primary outcome was death or bronchopulmonary dysplasia, confirmed by means of standardized oxygen-saturation monitoring, at a postmenstrual age of 36 weeks. RESULTS A total of 175 of 437 infants assigned to budesonide for whom adequate data were available (40.0%), as compared with 194 of 419 infants assigned to placebo for whom adequate data were available (46.3%), died or had bronchopulmonary dysplasia (relative risk, stratified according to gestational age, 0.86; 95% confidence interval [CI], 0.75 to 1.00; P = 0.05). The incidence of bronchopulmonary dysplasia was 27.8% in the budesonide group versus 38.0% in the placebo group (relative risk, stratified according to gestational age, 0.74; 95% CI, 0.60 to 0.91; P = 0.004); death occurred in 16.9% and 13.6% of the patients, respectively (relative risk, stratified according to gestational age, 1.24; 95% CI, 0.91 to 1.69; P = 0.17). The proportion of infants who required surgical closure of a patent ductus arteriosus was lower in the budesonide group than in the placebo group (relative risk, stratified according to gestational age, 0.55; 95% CI, 0.36 to 0.83; P = 0.004), as was the proportion of infants who required reintubation (relative risk, stratified according to gestational age, 0.58; 95% CI, 0.35 to 0.96; P = 0.03). Rates of other neonatal illnesses and adverse events were similar in the two groups. CONCLUSIONS Among extremely preterm infants, the incidence of bronchopulmonary dysplasia was lower among those who received early inhaled budesonide than among those who received placebo, but the advantage may have been gained at the expense of increased mortality
- …