164 research outputs found

    BIOMECHANICAL STUDY ON CADAVER KNEE FOR THE EVALUATION OF CRUCIATE KNEE LIGAMENT RECONSTRUCTIONS

    Get PDF
    INTRODUCTION: Ruptures of the anterior and posterior cruciate knee ligament (ACL and PCL), alone or combined, are some of the most frequent joint injuries, especially in sports. The long-term unsatisfactory results and lack of systematic evaluation of surgical reconstructions have led us to undergo an evaluation on cadaver knees. MATERIAL AND METHOD: A preliminary study was performed on one cadaver knee. The femur was fixed on a holder and magnetic sensors “BirdsTM” were attached to the tibia and the femur, which tracked the knee’s movement. A threedimensional knee analyzer GENI(1) was used to calculate kinematic parameters (tibial internal and external rotation and ab/adduction), as well as ligament combined deformation (elongation / bending / torsion) during knee flexion. This experiment was performed on an intact knee and a knee where the PCL has been cut and reconstructed using a synthetic Trevia ligament. Finally the knee was dissected to produce a combined postero-lateral instability and reconstructed with and without postero-lateral corner reconstruction. The effect of different reconstruction methods on kinematics and ligament deformation were compared. RESULTS AND DISCUSSION: Kinematic parameters changed significantly when PCl and postero-lateral corner were dissected. The reconstruction of the PCL alone, using an “Over-the-Bottom” method described by Krudwig(2), shifted the curves back to the initial situation and decreased the variability of the movement. Ligament deformation was 3 mm elongation, 50o femoral flexion and 90o torsion. These values are in accordance with material properties and should lead to good long-term biofunctionnality. CONCLUSION: This study proposes an in vitro protocol for a better understanding of the clinical success or failure of different procedures. Preliminary results showed that the system and the protocol setup are sensitive to changes in kinematics following posterior cruciate ligament dissection and reconstruction. Experiments are performed at this time on several cadaver knees, in order to compare different reconstruction methods. REFERENCES: Sati, M. et al. (1997). Computer Assisted Knee Surgery: Diagnostics and Planning of Knee Surgery. Computer Aided Surgery 2, 108-123. Krudwig, W. (1997). In L'H. Yahia (Ed.), Ligaments and Ligamentoplasties. Heidelberg: Springer Verlag

    Emergent Phenomena Induced by Spin-Orbit Coupling at Surfaces and Interfaces

    Full text link
    Spin-orbit coupling (SOC) describes the relativistic interaction between the spin and momentum degrees of freedom of electrons, and is central to the rich phenomena observed in condensed matter systems. In recent years, new phases of matter have emerged from the interplay between SOC and low dimensionality, such as chiral spin textures and spin-polarized surface and interface states. These low-dimensional SOC-based realizations are typically robust and can be exploited at room temperature. Here we discuss SOC as a means of producing such fundamentally new physical phenomena in thin films and heterostructures. We put into context the technological promise of these material classes for developing spin-based device applications at room temperature

    XPO1 expression worsens the prognosis of unfavorable DLBCL that can be effectively targeted by selinexor in the absence of mutant p53

    Get PDF
    Additional file 1. Table S1: Clinicopathologic and molecular characteristics of DLBCL patients with high or low XPO1 expression. Table S2: Significantly differentially expressed genes between XPO1high and XPO1low DLBCL patients with concurrent TP53 mutation and high MYC expression. Figure S1: Biomarker study for XPO1 and selinexor. (A–B) XPO1high expression showed significant adverse prognostic impact in the ABC subtype but not the GCB subtype of DLBCL. (C) XPO1high expression showed a trend of unfavorable prognostic effect on PFS in MYC-rearranged (MYC-R+) DLBCL. (D) XPO1high expression was associated with significantly poorer survival in DLBCL patients with wild type (Wt) TP53. (E) ABC-DLBCL and GCB-DLBCL cells showed similar sensitivity to the cytotoxicity of selinexor. (F) TP53 mutation (Mut-TP53) significantly reduced the anti-lymphoma efficacy of selinexor in HGBCL-DH cells. IC50 values were calculated by GraphPad Prism 8 based on the cell viability data after 72-hour treatment

    Development of a NiTi Anterior Cruciate Ligament Prosthesis

    No full text
    For the development of a Shape Memory Alloy (SMA) ligament prosthesis model, it is necessary to overcome the problem of the fatigue life under mechanical loading of nickel titanium wires. The degradation of the superelastic parameters as a function of the cyclic strain was evaluated and the number of cycles to failure under controled strain was established. On the basis of these results, an orientation in the design of the SMA ligament prosthesis can be proposed

    Fatigue Life of Superelastic Springs for an Anterior Cruciate Ligament Prosthesis

    No full text
    The fatigue behavior of NiTi and copper based shape memory springs destined to be integrated into an anterior cruciate ligament prosthesis has been investigated and compared to the fatigue life of NiTi wires of low diameter. The degradation of the superelastic parameters has been evaluated and the number of cycles until rupture has been plotted as a function of the internal strain. The influence of the solicitation mode on the fatigue life of Shape Memory structures is pointed out
    • …
    corecore