2,190 research outputs found
The role of E1-E2 interplay in multiphonon Coulomb excitation
In this work we study the problem of a charged particle, bound in a
harmonic-oscillator potential, being excited by the Coulomb field from a fast
charged projectile. Based on a classical solution to the problem and using the
squeezed-state formalism we are able to treat exactly both dipole and
quadrupole Coulomb field components. Addressing various transition amplitudes
and processes of multiphonon excitation we study different aspects resulting
from the interplay between E1 and E2 fields, ranging from classical dynamic
polarization effects to questions of quantum interference. We compare exact
calculations with approximate methods. Results of this work and the formalism
we present can be useful in studies of nuclear reaction physics and in atomic
stopping theory.Comment: 10 pages, 6 figure
Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets
In the CERN NA63 collaboration we have addressed the question of the
potential inadequacy of the commonly used Migdal formulation of the
Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20
and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of
LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference
target, Ta. For each target and energy, a comparison between simulated values
based on the LPM suppression of incoherent bremsstrahlung is shown, taking
multi-photon effects into account. For these targets and energies, we find that
Migdal's theoretical formulation is adequate to a precision of better than
about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure
Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures
The oxidation of the Pd(100) surface at oxygen pressures in the 10^-6 to 10^3
mbar range and temperatures up to 1000 K has been studied in-situ by surface
x-ray diffraction (SXRD). The results provide direct structural information on
the phases present in the surface region and on the kinetics of the oxide
formation. Depending on the (T,p) environmental conditions we either observe a
thin sqrt(5) x sqrt(5) R27 surface oxide or the growth of a rough, poorly
ordered bulk oxide film of PdO predominantly with (001) orientation. By either
comparison to the surface phase diagram from first-principles atomistic
thermodynamics or by explicit time-resolved measurements we identify a strong
kinetic hindrance to the bulk oxide formation even at temperatures as high as
675 K.Comment: 4 pages including 4 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
The pathogenicity island encoded PvrSR/RcsCB regulatory network controls biofilm formation and dispersal in Pseudomonas aeruginosa PA14
Pseudomonas aeruginosa biofilm formation is linked to persistent infections in humans. Biofilm formation is facilitated by extracellular appendages, some of which are assembled by the Chaperone Usher Pathway (Cup). The cupD gene cluster is located on the PAPIâ1 pathogenicity island of strain PA14 and has probably been acquired together with four genes encoding twoâcomponent signal transduction proteins. We have previously showed that the RcsB response regulator activates expression of the cupD genes, which leads to the production of CupD fimbriae and increased attachment. Here we show that RcsB activity is tightly modulated by two sensors, RcsC and PvrS. While PvrS acts as a kinase that enhances RcsB activity, RcsC has a dual function, first as a phosphorelay, and second as a phosphatase. We found that, under certain growth conditions, overexpression of RcsB readily induces biofilm dispersal. Microarray analysis shows that RcsB positively controls expression of pvrR that encodes the phosphodiesterase required for this dispersal process. Finally, in addition to the PAPIâ1 encoded cupD genes, RcsB controls several genes on the core genome, some of which encode orphan response regulators. We thus discovered that RcsB is central to a large regulatory network that fineâtunes the switch between biofilm formation and dispersal
Optimizing Stellarators for Turbulent Transport
Up to now, the term "transport-optimized" stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely gyrokinetic codes valid for 3D nonlinear simulations, and stellarator optimization codes. A first proof-of-principle configuration is obtained, reducing the level of ion temperature gradient turbulent transport from the NCSX baseline design by a factor of about 2.5
Effects of tea extracts on the colonization behaviour of Candida species:attachment inhibition and biofilm enhancement
Purpose. We assessed the effects of four different types of tea extracts (green, oolong, black and pu-erh tea) on cellular surface properties (hydrophobicity and auto-aggregation) and the colonization attributes (attachment and biofilm formation) of four strains of Candida albicans and three strains of Candida krusei. Methodology. The cellular surface properties were determined using spectrophotometry. The colonization activities were quantified using colorimetric viability assays and visualized using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Results. The tea extracts, in general, reduced the hydrophobicity (by 8-66%) and auto-aggregation (by 20-65%), and inhibited the attachment of two C. krusei strains (by 41-88%). Tea extracts enhanced the biofilm formation of one C. albicans and two C. krusei strains (by 1.4-7.5-fold). The observed reduction in hydrophobicity strongly correlated with the reduction in attachment of the two C. krusei strains (
- âŚ