5,531 research outputs found
Parental child-feeding strategies in relation to Dutch children's fruit and vegetable intake
Objective: To identify parental child-feeding strategies that may increase children's fruit or vegetable intake, since the relationship between these strategies and children's intake has never been investigated for fruit and vegetables as two separate food groups. Design: A survey study, where parents provided information about their practices in relation to feeding their children and about their own and their children's fruit and vegetable intake. Children completed a preference questionnaire about fruit and vegetables. To find underlying parental child-feeding strategies, factor analysis was applied to parents' practices in relation to fruit and vegetables separately. Regression analysis was used to predict the effect of these strategies on children's fruit and vegetable intake. The impact of the strategies was further analysed by estimating children's intake based on the frequency of use of specific strategies. Setting: The study was conducted at three primary schools in The Netherlands. Subjects: A total of 259 children between 4 and 12 years old and their parents (n242). Results: Parents used different strategies for fruit as compared with vegetables. The vegetable-eating context was more negative than the fruit-eating context. Parental intake and presenting the children with choice were positive predictors of children's intake of both fruit and vegetables. The intake difference based on frequency of use of the strategy 'Choice' was 40 g/d for vegetables and 72 g/d for fruit (
Lattice-Boltzmann hydrodynamics of anisotropic active matter
A plethora of active matter models exist that describe the behavior of
self-propelled particles (or swimmers), both with and without hydrodynamics.
However, there are few studies that consider shape-anisotropic swimmers and
include hydrodynamic interactions. Here, we introduce a simple method to
simulate self-propelled colloids interacting hydrodynamically in a viscous
medium using the lattice-Boltzmann technique. Our model is based on
raspberry-type viscous coupling and a force/counter-force formalism which
ensures that the system is force free. We consider several anisotropic shapes
and characterize their hydrodynamic multipolar flow field. We demonstrate that
shape-anisotropy can lead to the presence of a strong quadrupole and octupole
moments, in addition to the principle dipole moment. The ability to simulate
and characterize these higher-order moments will prove crucial for
understanding the behavior of model swimmers in confining geometries.Comment: 11 pages, 3 figures, 3 table
Recommended from our members
Aerosol direct radiative effect of smoke over clouds over the southeast Atlantic Ocean from 2006 to 2009
The aerosol direct radiative effect (DRE) of African smoke was analyzed in cloud scenes over the southeast Atlantic Ocean, using Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Hadley Centre Global Environmental Model version 2 (HadGEM2) climate model simulations. The observed mean DRE was about 30â35 W mâ2 in August and September 2006â2009. In some years, short episodes of high-aerosol DRE can be observed, due to high-aerosol loadings, while in other years the loadings are lower but more prolonged. Climate models that use evenly distributed monthly averaged emission fields will not reproduce these high-aerosol loadings. Furthermore, the simulated monthly mean aerosol DRE in HadGEM2 is only about 6âW mâ2 in August. The difference with SCIAMACHY mean observations can be partly explained by an underestimation of the aerosol absorption Ă
ngström exponent in the ultraviolet. However, the subsequent increase of aerosol DRE simulation by about 20% is not enough to explain the observed discrepancy between simulations and observations
Southeast Atlantic Ocean aerosol direct radiative effects over clouds: Comparison of observations and simulations
This is the final version. Available from AIP Publishing via the DOI in this recordAbsorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation absorption by aerosols heat the atmosphere locally, and, through rapid adjustments of the atmospheric column and cloud dynamics, the net effect can be amplified considerably. We developed a technique to study the absorption of radiation of smoke over low lying clouds using satellite spectrometry. The TOA DRE of smoke over clouds is large and positive over the southeast Atlantic Ocean off the west coast of Africa, which can be explained by the large decrease of reflected radiation by a polluted cloud, especially in the UV. However, general circulation models (GCMs) fail to reproduce these strong positive DRE, and in general GCMs disagree on the magnitude and even sign of the aerosol DRE in the southeast Atlantic region. Our satellite-derived DRE measurements show clear seasonal and inter-annual variations, consistent with other satellite measurements, which are not reproduced by GCMs. A comparison with model results showed discrepancies with the Ă
ngström exponent of the smoke aerosols, which is larger than assumed in simulations, and a sensitivity to emission scenarios. However, this was not enough to explain the discrepancies, and we suspect that the modeling of cloud distributions and microphysics will have the necessary larger impact on DRE that will explain the differences between observations and modeling.Netherlands Space Offic
Spontaneous Charging and Crystallization of Water Droplets in Oil
We study the spontaneous charging and the crystallization of spherical
micron-sized water-droplets dispersed in oil by numerically solving, within a
Poisson-Boltzmann theory in the geometry of a spherical cell, for the density
profiles of the cations and anions in the system. We take into account
screening, ionic Born self-energy differences between oil and water, and
partitioning of ions over the two media. We find that the surface charge
density of the droplet as induced by the ion partitioning is significantly
affected by the droplet curvature and by the finite density of the droplets. We
also find that the salt concentration and the dielectric constant regime in
which crystallization of the water droplets is predicted is enhanced
substantially compared to results based on the planar oil-water interface,
thereby improving quantitative agreement with recent experiments.Comment: 10 pages, 7 figures, submitted for publicatio
The effect of floating houses on water quality
The need of an adaptive sustainable solution for the increased land scarcity, growing urbanization, climate change and flood risks resulted in the concept of the floating urbanization. In The Netherlands this new type of housing attracted the interest of local authorities, municipalities and water boards. Moreover, plans to incorporate floating houses in the urban planning have already been developed. However, the knowledge gap regarding the potential effect on the water quality halts the further development of the floating houses. This paper shows the results of a water quality measurement campaign, as part of the national program âKnowledge for climateâ, at a small floating houses project in Delft and serves as a case study for addressing the environmental-ecological knowledge gap on this topic
- âŠ