16 research outputs found
Reference values for serum creatinine in children younger than 1 year of age
Reliable reference values of enzymatically assayed serum creatinine categorized in small age intervals are lacking in young children. The aim of this study was to determine reference values for serum creatinine during the first year of life and study the influence of gender, weight and height on these values. Serum creatinine determinations between 2003 and 2008 were retrieved from the hospital database. Strict exclusion criteria ensured the selection of patients without kidney damage. Correlation analysis was performed to evaluate the relation between height, weight and serum creatinine; the Mann–Whitney test was used to evaluate the relation between gender and serum creatinine. A broken stick model was designed to predict normal serum creatinine values. Mean serum creatinine values were found to decrease rapidly from 55 μmol/L on day 1 to 22 μmol/L in the second month of life; they then stabilized at 20 μmol/L until the seventh month, followed by a slight increase. No significant relation was found between serum creatinine and gender, weight and height. We present here reference values of serum creatinine in infants not at risk of decreased renal function. The absence of a relationship with gender, weight and height confirms that height-based equations to estimate glomerular filtration rate are less useful in patients of this age group
Role of Nitric Oxide in Shiga Toxin-2-Induced Premature Delivery of Dead Fetuses in Rats
Shiga toxin-producing Escherichia coli (STEC) infections could be one of the causes of fetal morbimortality in pregnant women. The main virulence factors of STEC are Shiga toxin type 1 and/or 2 (Stx1, Stx2). We previously reported that intraperitoneal (i.p.) injection of rats in the late stage of pregnancy with culture supernatant from recombinant E. coli expressing Stx2 and containing lipopolysaccharide (LPS) induces premature delivery of dead fetuses. It has been reported that LPS may combine with Stx2 to facilitate vascular injury, which may in turn lead to an overproduction of nitric oxide (NO). The aim of this study was to evaluate whether NO is involved in the effects of Stx2 on pregnancy. Pregnant rats were i.p. injected with culture supernatant from recombinant E. coli containing Stx2 and LPS (sStx2) on day 15 of gestation. In addition, some rats were injected with aminoguanidine (AG), an inducible isoform inhibitor of NO synthase (iNOS), 24 h before and 4 h after sStx2 injection. NO production was measured by NOS activity and iNOS expression by Western blot analysis. A significant increase in NO production and a high iNOS expression was observed in placental tissues from rats injected with sStx2 containing 0.7 ng and 2 ng Stx2/g body weight and killed 12 h after injection. AG caused a significant reduction of sStx2 effects on the feto-maternal unit, but did not prevent premature delivery. Placental tissues from rats treated with AG and sStx2 presented normal histology that was indistinguishable from the controls. Our results reveal that Stx2-induced placental damage and fetus mortality is mediated by an increase in NO production and that AG is able to completely reverse the Stx2 damages in placental tissues, but not to prevent premature delivery, thus suggesting other mechanisms not yet determined could be involved