2,081 research outputs found
Theory of Coexisting Transverse Spin Freezing and Long-Ranged Antiferromagnetic Order in Lightly Doped La_{2-x}Sr_x CuO_4
We provide an explanation of the spin-freezing transition recently observed
by Chou et al. (Phys. Rev. Lett. 71, 2323 (1993)) in La_{2-x}Sr_x CuO_4 for x
<= 0.02. We propose that topological excitations of the 2D Heisenberg quantum
antiferromagnet having non-coplanar transverse components have a
pair-interaction energy that qualitatively and quantitatively agrees with the
observed values of spin-freezing temperature as a function of doping.Comment: 18 pages, figures available upon request, revtex, 500
Topological Defects and the Spin Glass Phase of Cuprates
We propose that the spin glass phase of cuprates is due to the proliferation
of topological defects of a spiral distortion of the antiferromagnet order. Our
theory explains straightforwardly the simultaneous existence of short range
incommensurate magnetic correlations and complete a-b symmetry breaking in this
phase. We show via a renormalization group calculation that the collinear
O(3)/O(2) symmetry is unstable towards the formation of local non-collinear
correlations. A critical disorder strength is identified beyond which
topological defects proliferate already at zero temperature.Comment: 7 pages, 2 figures. Final version with some changes and one replaced
figur
Optical conductivity of a metal-insulator transition for the Anderson-Hubbard model in 3 dimensions away from 1/2 filling
We have completed a numerical investigation of the Anderson-Hubbard model for
three-dimensional simple cubic lattices using a real-space self-consistent
Hartree-Fock decoupling approximation for the Hubbard interaction. In this
formulation we treat the spatial disorder exactly, and therefore we account for
effects arising from localization physics. We have examined the model for
electronic densities well away 1/2 filling, thereby avoiding the physics of a
Mott insulator. Several recent studies have made clear that the combined
effects of electronic interactions and spatial disorder can give rise to a
suppression of the electronic density of states, and a subsequent
metal-insulator transition can occur. We augment such studies by calculating
the ac conductivity for such systems. Our numerical results show that weak
interactions enhance the density of states at the Fermi level and the
low-frequency conductivity, there are no local magnetic moments, and the ac
conductivity is Drude-like. However, with a large enough disorder strength and
larger interactions the density of states at the Fermi level and the
low-frequency conductivity are both suppressed, the conductivity becomes
non-Drude-like, and these phenomena are accompanied by the presence of local
magnetic moments. The low-frequency conductivity changes from a sigma-sigma_dc
omega^{1/2} behaviour in the metallic phase, to a sigma omega^2 behaviour in
the nonmetallic regime. Our numerical results show that the formation of
magnetic moments is essential to the suppression of the density of states at
the Fermi level, and therefore essential to the metal-insulator transition
Critiquing Variational Theories of the Anderson-Hubbard Model: Real-Space Self-Consistent Hartree-Fock Solutions
A simple and commonly employed approximate technique with which one can
examine spatially disordered systems when strong electronic correlations are
present is based on the use of real-space unrestricted self-consistent
Hartree-Fock wave functions. In such an approach the disorder is treated
exactly while the correlations are treated approximately. In this report we
critique the success of this approximation by making comparisons between such
solutions and the exact wave functions for the Anderson-Hubbard model. Due to
the sizes of the complete Hilbert spaces for these problems, the comparisons
are restricted to small one-dimensional chains, up to ten sites, and a 4x4
two-dimensional cluster, and at 1/2 filling these Hilbert spaces contain about
63,500 and 166 million states, respectively. We have completed these
calculations both at and away from 1/2 filling. This approximation is based on
a variational approach which minimizes the Hartree-Fock energy, and we have
completed comparisons of the exact and Hartree-Fock energies. However, in order
to assess the success of this approximation in reproducing ground-state
correlations we have completed comparisons of the local charge and spin
correlations, including the calculation of the overlap of the Hartree-Fock wave
functions with those of the exact solutions. We find that this approximation
reproduces the local charge densities to quite a high accuracy, but that the
local spin correlations, as represented by , are not as well
represented. In addition to these comparisons, we discuss the properties of the
spin degrees of freedom in the HF approximation, and where in the
disorder-interaction phase diagram such physics may be important
Unifying the Phase Diagrams of the Magnetic and Transport Properties of La_(2-x)Sr_xCuO_4, 0 < x < 0.05
An extensive experimental and theoretical effort has led to a largely
complete mapping of the magnetic phase diagram of La_(2-x)Sr_xCuO_4, and a
microscopic model of the spin textures produced in the x < 0.05 regime has been
shown to be in agreement with this phase diagram. Here we use this same model
to derive a theory of the impurity-dominated, low temperature transport. Then,
we present an analysis of previously published data for two samples: x = 0.002
data from Chen et. al., and x = 0.04 data from Keimer et. al. We show that the
transport mechanisms in the two systems are the same, even though they are on
opposite sides of the observed insulator-to-metal transition. Our model of
impurity effects on the impurity band conduction, variable-range hopping
conduction, and coulomb gap conduction, is similar to that used to describe
doped semiconductors. However, for La_(2-x)Sr_xCuO_4 we find that in addition
to impurity-generated disorder effects, strong correlations are important and
must be treated on a equal level with disorder. On the basis of this work we
propose a phase diagram that is consistent with available magnetic and
transport experiments, and which connects the undoped parent compound with the
lowest x value for which La_(2-x)Sr_xCuO_4 is found to be superconducting, x
about 0.06.Comment: 7 pages revtex with one .ps figur
Recovery of zeta-chain expression and changes in spontaneous IL-10 production after PSA-based vaccines in patients with prostate cancer.
Circulating T lymphocytes of patients with prostate cancer have been reported to have functional deficits, including low or absent zeta-chain expression. To determine whether these functional impairments could be reversed by prostate specific antigen-based vaccination therapy, 10 patients treated with recombinant human prostate specific antigen plus GM-CSF and eight others receiving prostate specific antigen plus oil emulsion in two pilot clinical trials were evaluated prior to and after vaccination for several immunologic end points, including zeta-chain expression and cytokine production by circulating T cells as well as the frequency of T cells able to respond to prostate specific antigen in ELISPOT assays. The flow cytometry assay for zeta-chain expression was standardized to allow for a reliable comparison of pre- vs post-vaccination samples. Prior to therapy, the patients were found to have significantly lower zeta-chain expression in circulating CD3(+) cells and a higher percentage of zeta-chain negative CD3(+) and CD4(+) cells than normal donors. The patients\u27 peripheral blood mononuclear cells spontaneously produced more IL-10 ex vivo than those of normal controls. After vaccination, recovery of zeta-chain expression was observed in 50% of patients in both clinical trials. Also, spontaneous IL-10 secretion by peripheral blood mononuclear cells decreased following immunotherapy in patients treated with prostate specific antigen and GM-CSF. The frequency of prostate specific antigen-reactive T cells was detectable in 7 out of 18 patients vs 4 out of 18 patients prior to vaccination. Only one of 18 patients was a clinical responder. The vaccine had stimulatory effects on the patients\u27 immune system, but post-vaccine immune recovery could not be correlated to progression-free survival in this small cohort of patients with prostate cancer
Sr impurity effects on the magnetic correlations of LaSrCuO
We examine the low-temperature magnetic properties of moderately doped
LaSrCuO paying particular attention to the spin-glass (SG) phase and the C-IC
transition as they are affected by Sr impurity disorder. New measurements of
the low-temperature susceptibility in the SG phase show an increase of an
anomalously small Curie constant with doping. This behaviour is explained in
terms of our theoretical work that finds small clusters of AFM correlated
regions separated by disordered domain walls. The domain walls lead to a
percolating sequence of paths connecting the impurities. We predict that for
this spin morphology the Curie constant should scale as , a
result that is quantitatively in agreement with experiment. Also, we find that
the magnetic correlations in the ground states in the SG phase are
commensurate, and that this behaviour should persist at higher temperatures
where the holes should move along the domain walls. However, our results show
that incommensurate correlations develop continuously around 5 % doping,
consistent with recent measurements by Yamada.Comment: 30 pages, revtex, 8 .ps format figures (2 meant to be in colour), to
be published in Physical Review B
Photoemission spectra of : a theoretical analysis
Recent angle resolved photoemission (ARPES) results for the insulating
cuprate have provided the first experimental data
which can be directly compared to the (theoretically) well--studied problem of
a single hole propagating in an antiferromagnet. The ARPES results reported a
small bandwidth, providing evidence for the existence of strong correlations in
the cuprates. However, in the same experiment some discrepancies with the
familiar 2D model were also observed. Here we discuss a comparison
between the ARPES results and the quasiparticle dispersion of both (i) the
Hamiltonian and (ii) the three--band Hubbard model in the
strong--coupling limit. Both model Hamiltonians show that the experimentally
observed one--hole band structure can be approximately reproduced using
reasonable values for , or the direct oxygen hopping amplitude .Comment: 11 pages, RevTex version 3.0, 3 postscript figures, LaTeX file and
figures have been uuencoded
Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model
Comparing experimental data for high temperature cuprate superconductors with
numerical results for electronic models, it is becoming apparent that a hopping
along the plaquette diagonals has to be included to obtain a quantitative
agreement. According to recent estimations the value of the diagonal hopping
appears to be material dependent. However, the values for discussed
in the literature were obtained comparing theoretical results in the weak
coupling limit with experimental photoemission data and band structure
calculations. The goal of this paper is to study how gets renormalized as
the interaction between electrons, , increases. For this purpose, the effect
of adding a bare diagonal hopping to the fully interacting two dimensional
Hubbard model Hamiltonian is investigated using numerical techniques. Positive
and negative values of are analyzed. Spin-spin correlations, ,
vs , and local magnetic moments are studied for values
of ranging from 0 to 6, and as a function of the electronic density. The
influence of the diagonal hopping in the spectral function
is also discussed, and the changes in the gap present in the density of states
at half-filling are studied. We introduce a new criterion to determine probable
locations of Fermi surfaces at zero temperature from data obtained
at finite temperature. It appears that hole pockets at
may be induced for negative while a positive produces similar
features at and . Comparisons with the standard 2D
Hubbard () model indicate that a negative hopping amplitude appears
to be dynamically generated. In general, we conclude that it is very dangerous
to extract a bare parameter of the Hamiltonian from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with
uufile
Electronic properties of disordered corner-sharing tetrahedral lattices
We have examined the behaviour of noninteracting electrons moving on a
corner-sharing tetrahedral lattice into which we introduce a uniform (box)
distribution, of width W, of random on-site energies. We have used both the
relative localization length and the spectral rigidity to analyze the nature of
the eigenstates, and have determined both the mobility edge trajectories as a
function of W, and the critical disorder, Wc, beyond which all states are
localized. We find (i) that the mobility edge trajectories (energies Ec vs.
disorder W) are qualitatively different from those found for a simple cubic
lattice, and (ii) that the spectral rigidity is scale invariant at Wc and thus
provides a reliable method of estimating this quantity -- we find Wc/t=14.5. We
discuss our results in the context of the metal-to-insulator transition
undergone by LiAlyTi{2-y}O4 in a quantum site percolation model that also
includes the above-mentioned Anderson disorder, and show that the effects
produced by Anderson disorder are far less important than those produced by
quantum site percolation, at least in the determination of the doping
concentration at which the metal-to-insulator transition is predicted to occur
- …
