8 research outputs found
A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles
In recent years, there has been a dramatic increase in the use of unmanned
aerial vehicles (UAVs), particularly for small UAVs, due to their affordable
prices, ease of availability, and ease of operability. Existing and future
applications of UAVs include remote surveillance and monitoring, relief
operations, package delivery, and communication backhaul infrastructure.
Additionally, UAVs are envisioned as an important component of 5G wireless
technology and beyond. The unique application scenarios for UAVs necessitate
accurate air-to-ground (AG) propagation channel models for designing and
evaluating UAV communication links for control/non-payload as well as payload
data transmissions. These AG propagation models have not been investigated in
detail when compared to terrestrial propagation models. In this paper, a
comprehensive survey is provided on available AG channel measurement campaigns,
large and small scale fading channel models, their limitations, and future
research directions for UAV communication scenarios
Unmanned Aerial Vehicle and IoT as Enabling Technologies for 5G: Frameworks, Applications and Challenges
From the very beginning the Internet was envisioned to provide connectionsâfirst between people and the documents they used, now not only among people but between machines as well. And with the current pace of technology development, Gartnerâs predictions rise to include 26 billion devices connected to the internet by 2020 with a global economic added value of $1.9 trillion. Among these the frontline is held by self-driving cars and connected cars. The focus of the chapter is how unmanned aerial vehicles, also simply called drones, can be integrated together with the IoT to become one of the major enablers of 5G and Beyond 5G (B5G) networks. A short introduction into the topic covering the main functionality, advantages and challenges of UAVs is followed by discussing the complementary roles that drones and IoT devices can have in the communication canopy. The second part will concentrate on specific architectural issues, discussing different frameworks and network models that can accommodate UAV and IoT integration. The role of UAVs as major entities in the 5G communication network, the promises and challenges are discussed in detail. Following is an overview of some of the most recent applications based on merging these two technologies, including two ongoing projects. © Springer Nature Switzerland AG 2020