56 research outputs found

    Factors Influencing the Intention of Getting the HPV Vaccine among College Women: An Application of the Reasoned Action Approach

    Get PDF
    Purpose: Although at high risk for contracting HPV, less than half of college women have been vaccinated. The purpose of the current study was to examine underlying factors influencing college women’s intention to get the HPV vaccine using the Reasoned Action Approach (RAA). Methods: Data were collected from two different samples of college women at a large Mid-west university via two phases. In Phase 1, a salient-belief elicitation survey based on the RAA was utilized to collect quantitative and qualitative data from 43 college women. Phase 1 data were then utilized to create a quantitative closed-ended instrument, which was administered to a large sample (n=279) of female college students in Phase 2. Results: Results indicated that the perceived consequences of getting the vaccine, such as protection against HPV and cervical cancer, were primary determinants influencing intention to get the HPV vaccine. Participants perceived healthcare providers and mothers as salient referents influencing their vaccination decisions. Attitude towards the act and perceived norm were the major predictors of intention to get a vaccine. Conclusions: Results suggest the importance of attitudes and perceived norms (especially mothers and healthcare providers) in predicting intention to get the HPV vaccine. Utilizing theory-based approaches to design interventions may be beneficial to increase vaccination rates among college women. Such interventions could focus on the attitudes and perceived norms of college students’ regarding getting the HPV vaccine

    General plane wave mode functions for scalar-driven cosmology

    Full text link
    We give a solution for plane wave scalar, vector and tensor mode functions in the presence of any homogeneous, isotropic and spatially flat cosmology which is driven by a single, minimally coupled scalar. The solution is obtained by rescaling the various mode functions so that they reduce, with a suitable scale factor and a suitable time variable, to those of a massless, minimally coupled scalar. We then express the general solution in terms of co-moving time and the original scale factor.Comment: 6 pages, revtex4, no figures, revised version corrects an embarrassing mistake (in the published version) for the parameter q_C. Affected eqns are 45 and 6

    The IR-Completion of Gravity: What happens at Hubble Scales?

    Full text link
    We have recently proposed an "Ultra-Strong" version of the Equivalence Principle (EP) that is not satisfied by standard semiclassical gravity. In the theory that we are conjecturing, the vacuum expectation value of the (bare) energy momentum tensor is exactly the same as in flat space: quartically divergent with the cut-off and with no spacetime dependent (subleading) ter ms. The presence of such terms seems in fact related to some known difficulties, such as the black hole information loss and the cosmological constant problem. Since the terms that we want to get rid of are subleading in the high-momentum expansion, we attempt to explore the conjectured theory by "IR-completing" GR. We consider a scalar field in a flat FRW Universe and isolate the first IR-correction to its Fourier modes operators that kills the quadratic (next to leading) time dependent divergence of the stress energy tensor VEV. Analogously to other modifications of field operators that have been proposed in the literature (typically in the UV), the present approach seems to suggest a breakdown (here, in the IR, at large distances) of the metric manifold description. We show that corrections to GR are in fact very tiny, become effective at distances comparable to the inverse curvature and do not contain any adjustable parameter. Finally, we derive some cosmological implications. By studying the consistency of the canonical commutation relations, we infer a correction to the distance between two comoving observers, which grows as the scale factor only when small compared to the Hubble length, but gets relevant corrections otherwise. The corrections to cosmological distance measures are also calculable and, for a spatially flat matter dominated Universe, go in the direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde

    Averaging Robertson-Walker Cosmologies

    Full text link
    The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the Buchert averaging formalism to linear Robertson-Walker universes containing matter, radiation and dark energy and evaluate numerically the discrepancies between the assumed and the averaged behaviour, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h=0.701. For the LCDM concordance model, the backreaction is of the order of Omega_eff~4x10^-6, with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10^-8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state w_eff<-1/3 can be found for strongly phantom models.Comment: 18 pages, 11 figures, ReVTeX. Updated to version accepted by JCA

    Stochastic Inflation Revisited: Non-Slow Roll Statistics and DBI Inflation

    Full text link
    Stochastic inflation describes the global structure of the inflationary universe by modeling the super-Hubble dynamics as a system of matter fields coupled to gravity where the sub-Hubble field fluctuations induce a stochastic force into the equations of motion. The super-Hubble dynamics are ultralocal, allowing us to neglect spatial derivatives and treat each Hubble patch as a separate universe. This provides a natural framework in which to discuss probabilities on the space of solutions and initial conditions. In this article we derive an evolution equation for this probability for an arbitrary class of matter systems, including DBI and k-inflationary models, and discover equilibrium solutions that satisfy detailed balance. Our results are more general than those derived assuming slow roll or a quasi-de Sitter geometry, and so are directly applicable to models that do not satisfy the usual slow roll conditions. We discuss in general terms the conditions for eternal inflation to set in, and we give explicit numerical solutions of highly stochastic, quasi-stationary trajectories in the relativistic DBI regime. Finally, we show that the probability for stochastic/thermal tunneling can be significantly enhanced relative to the Hawking-Moss instanton result due to relativistic DBI effects.Comment: 38 pages, 2 figures. v3: minor revisions; version accepted into JCA

    Back Reaction And Local Cosmological Expansion Rate

    Get PDF
    We calculate the back reaction of cosmological perturbations on a general relativistic variable which measures the local expansion rate of the Universe. Specifically, we consider a cosmological model in which matter is described by a single field. We analyze back reaction both in a matter dominated Universe and in a phase of scalar field-driven chaotic inflation. In both cases, we find that the leading infrared terms contributing to the back reaction vanish when the local expansion rate is measured at a fixed value of the matter field which is used as a clock, whereas they do not appear to vanish if the expansion rate is evaluated at a fixed value of the background time. We discuss possible implications for more realistic models with a more complicated matter sector.Comment: 7 pages, No figure

    On the Initial Conditions for Brane Inflation

    Get PDF
    String theory gives rise to various mechanisms to generate primordial inflation, of which ``brane inflation'' is one of the most widely considered. In this scenario, inflation takes place while two branes are approaching each other, and the modulus field representing the separation between the branes plays the role of the inflaton field. We study the phase space of initial conditions which can lead to a sufficiently long period of cosmological inflation, and find that taking into account the possibility of nonvanishing initial momentum can significantly change the degree of fine tuning of the required initial conditions.Comment: 11 pages, 2 figure

    Gradient expansion(s) and dark energy

    Full text link
    Motivated by recent claims stating that the acceleration of the present Universe is due to fluctuations with wavelength larger than the Hubble radius, we present a general analysis of various perturbative solutions of fully inhomogeneous Einstein equations supplemented by a perfect fluid. The equivalence of formally different gradient expansions is demonstrated. If the barotropic index vanishes, the deceleration parameter is always positive semi-definite.Comment: 17 pages, no figure

    Loop Corrections to Cosmological Perturbations in Multi-field Inflationary Models

    Full text link
    We investigate one-loop quantum corrections to the power spectrum of adiabatic perturbation from entropy modes/adiabatic mode cross-interactions in multiple DBI inflationary models. We find that due to the non-canonical kinetic term in DBI models, the loop corrections are enhanced by slow-varying parameter Ï”\epsilon and small sound speed csc_s. Thus, in general the loop-corrections in multi-DBI models can be large. Moreover, we find that the loop-corrections from adiabatic/entropy cross-interaction vertices are IR finite.Comment: 21 pages, 7 figures; v2, typos corrected, ref added; v3 typos corrected, version for publishing in jca

    Can the Acceleration of Our Universe Be Explained by the Effects of Inhomogeneities?

    Full text link
    No. It is simply not plausible that cosmic acceleration could arise within the context of general relativity from a back-reaction effect of inhomogeneities in our universe, without the presence of a cosmological constant or ``dark energy.'' We point out that our universe appears to be described very accurately on all scales by a Newtonianly perturbed FLRW metric. (This assertion is entirely consistent with the fact that we commonly encounter Ύρ/ρ>1030\delta \rho/\rho > 10^{30}.) If the universe is accurately described by a Newtonianly perturbed FLRW metric, then the back-reaction of inhomogeneities on the dynamics of the universe is negligible. If not, then it is the burden of an alternative model to account for the observed properties of our universe. We emphasize with concrete examples that it is {\it not} adequate to attempt to justify a model by merely showing that some spatially averaged quantities behave the same way as in FLRW models with acceleration. A quantity representing the ``scale factor'' may ``accelerate'' without there being any physically observable consequences of this acceleration. It also is {\it not} adequate to calculate the second-order stress energy tensor and show that it has a form similar to that of a cosmological constant of the appropriate magnitude. The second-order stress energy tensor is gauge dependent, and if it were large, contributions of higher perturbative order could not be neglected. We attempt to clear up the apparent confusion between the second-order stress energy tensor arising in perturbation theory and the ``effective stress energy tensor'' arising in the ``shortwave approximation.''Comment: 20 pages, 1 figure, several footnotes and references added, version accepted for publication in CQG;some clarifying comments adde
    • 

    corecore