38 research outputs found
Comparative analysis of slot dimension in lingual bracket systems
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Recommended from our members
Combustion properties of coal-char blends: No{sub x} emission characteristics. Technical report, December 1, 1992--February 28, 1993
Tests under pulverized coal combustion conditions suggest that NO{sub x} formed during release of volatile matter far exceed NO{sub x} formed during combustion of the resulting char. This is attributed to char/NO{sub x} interactions by both direct reduction of NO, by carbon and char-catalyzed reduction by CO. This implies combustion of char not only produces substantially lower No{sub x} but the presence of char in the flame during initial stages of combustion may potentially provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. The goal of the project is to determine if the concept of NO{sub x} reduction by char/NO{sub x} interactions, while maintaining a high combustion efficiency by co-firing coal with char, is a technically feasible way to reduce NO{sub x} emissions. Char samples will be prepared in a continuous rotary tube kiln under mild gasification conditions. Combustion testing will be conducted with the coal and coal-char blends in a combustor located at BYU. The effect of coal/char ratio, formation characteristics, ignition characteristics, flame stability, and combustion efficiency will be determined. Physical and chemical properties of the fuels will be measured to help explain combustion and emission characteristics of fuels
Recommended from our members
Combustion properties of coal-char blends: NO{sub x} emission characteristics. Interim final technical report, September 1, 1992--August 31, 1993
Under pulverized coal combustion conditions, NO{sub x} formed during the release of volatile matter far exceed NO{sub x} formed from combustion of the resulting char. It is believed that interactions of NO{sub x} with char is responsible for the reduced NO{sub x} formation from the combustion of char. The goal of this research is to assess the potential technical and economical benefits of co-firing coal-char blends in pulverized coal boilers to reduce NO{sub x}. The rationale for the proposed research is that the presence of char in the flame during the initial stages of combustion may provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. This project is a cooperative effort between the Illinois State Geological Survey (ISGS) and BYU/ACERC. Seven hundred and fifty pounds of three coal-char blends containing 12.5%, 25%, and 50% char and 125 pounds of a coal-activated carbon blend containing 12.5% activated carbon were prepared. The volatile matter contents of the blends ranged from 27.3 to 35.6% (dry basis). Char (16.2 wt% volatile matter) was made from an Illinois No. 6 coal (Peabody Coal Company) in a continuous feed charring oven under mild gasification conditions. Nine combustion tests will be performed with the coal and blends in a 0.5--1.0 MBtu/hr combustor located at BYU. Combustion data will be analyzed to determine the effect of blend type, stoichiometry, and flame temperature on NO{sub x} formation, ignition characteristics, flame stability, and combustion efficiency. A four month no-cost extension has been requested for the project. The results of the combustion tests will be reported in the final technical report in December 1993
A comparative assessment of torque generated by lingual and conventional brackets
The aim of this study was to assess the effect of bracket type on the labiopalatal moments generated by lingual and conventional brackets. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), In-Ovation L lingual brackets (DENTSPLY GAC), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on identical maxillary acrylic resin models with levelled and aligned teeth. Each model was mounted on the orthodontic measurement and simulation system and 10 0.0175 × 0.0175 TMA wires were used for each bracket type. The wire was ligated with elastomerics into the Incognito, STb, and conventional brackets and each measurement was repeated once after religation. A 15 degrees buccal root torque (+15 degrees) and then a 15 degrees palatal root torque (-15 degrees) were gradually applied to the right central incisor bracket. After each activation, the bracket returned to its initial position and the moments in the sagittal plane were recorded during these rotations of the bracket. One-way analysis of variance with post hoc multiple comparisons (Tukey test at 0.05 error rate) was conducted to assess the effect on bracket type on the generated moments. The magnitude of maximum moment at +15 degrees ranged 8.8, 8.2, 7.1, and 5.8 Nmm for the Incognito, STb, conventional Gemini, and the In-Ovation L brackets, respectively; similar values were recorded at -15 degrees: 8.6, 8.1, 7.0, and 5.7 Nmm, respectively. The recorded differences of maximum moments were statistically significant, except between the Incognito and STb brackets. Additionally, the torque angles were evaluated at which the crown torque fell well below the minimum levels of 5.0 Nmm, as well as the moment/torque ratio at the last part of the activation/deactivation curve, between 10 and 15 degrees. The lowest torque expression was observed at the self-ligating lingual brackets, followed by the conventional brackets. The Incognito and STb lingual brackets generated the highest moments